
© Copyright Khronos Group, 2014 - Page 1

SYCL v1.2 release

IWOCL, May 2015



© Copyright Khronos Group 2014

Over 100 members worldwide
any company is welcome to join

BOARD OF PROMOTERS

http://www.toshiba.com/
http://www.toshiba.com/
http://www.google.com/
http://www.google.com/
http://www.marvell.com/index.jsp
http://www.marvell.com/index.jsp
http://www.amd.com/
http://www.amd.com/


SYCL is not magic

SYCL is a practical, open, royalty-free standard to deliver 

high performance software on today’s highly-parallel systems



What is SYCL for?

• Modern C++ lets us separate the what from the how :

- We want to separate what the user wants to do: science, computer vision, AI …

- And enable the how to be: run fast on an OpenCL device

• Modern C++ supports and encourages this separation



What we want to achieve

• We want to enable a C++ ecosystem for OpenCL:

- C++ template libraries

- Tools: compilers, debuggers, IDEs, optimizers

- Training, example programs

- Long-term support for current and future OpenCL features



© Copyright Khronos Group 2014

Why a new standard?

• There are already very 

established ways to map C++ to 

parallel processors

- So we follow the established 

approaches

• There are specifics to do with 

OpenCL we need to map to C++

- We have worked hard to be an 

enabler for other C++ parallel 

standards

• We add no more than we need to

http://imgs.xkcd.com/comics/standards.png

http://imgs.xkcd.com/comics/standards.png


© Copyright Khronos Group 2014

What features of OpenCL do we need?

• We want to enable all OpenCL features in C++ with SYCL

- Images, work-groups, barriers, constant/global/local/private memory

- Memory sharing: mapping and DMA

- Platforms, contexts, events, queues

- Support wide range of OpenCL devices: CPUs, GPUs, FPGAs, DSPs…

• We want to make it easy to write high-performance OpenCL code in C++

- SYCL code in C++ must use memory and execute kernels efficiently

- We must provide developers with all the optimization options they have in OpenCL

• We want to enable OpenCL C code to interoperate with C++ SYCL code

- Sharing of contexts, memory objects etc



© Copyright Khronos Group 2014

How do we bring OpenCL features to C++?

• Key decisions:

- We will not add any language extensions to C++

- We will work with existing C++ compilers

- We will provide the full OpenCL feature-set in C++



How did we come to our decisions?

What was our thinking?



© Copyright Khronos Group 2014

Single-source vs C++ kernel language

• Single-source: a single-source file contains both host and device code

- Type-checking between host and device

- A single template instantiation can create all the code to kick off work, manage data 

and execute the kernel

- e.g. sort<MyClass> (myData);

- The approach taken by C++ 17 Parallel STL as well as SYCL

• C++ kernel language

- Matches standard OpenCL C

- Proposed for OpenCL v2.1

- Being considered as an addition for SYCL v2.1



© Copyright Khronos Group 2014

Why ‘name’ kernels?

• Enables implementers to have multiple, different compilers for host and 

different devices

- With SYCL, software developers can choose to use the best compiler for CPU and the 

best compiler for each individual device they want to support

- The resulting application will be highly optimized for CPU and OpenCL devices

- Easy-to-integrate into existing build systems

• Only required for C++11 lambdas, not required for C++ functors
- Required because lambdas don’t have a name to enable linking between different 

compilers



© Copyright Khronos Group 2014

Buffers/images/accessors vs shared pointers

• OpenCL v1.2 supports a wide range of different devices and operating 

systems

- All shared data must be encapsulated in OpenCL memory objects: buffers and 

images

- To enable SYCL to achieve maximum performance of OpenCL, we follow OpenCL’s 

memory model approach

- But, we apply OpenCL’s memory model to C++ with buffers, images and accessors

- Separation of data storage and data access



© Copyright Khronos Group 2014

Hierarchical parallelism

• A whole new approach

• Enables high-performance, portable C++ template algorithms to work across 

CPUs, GPUs and other devices easily

• Is really just syntactical



What can I do with SYCL?

Anything you can do with C++!

With the performance and portability of OpenCL



© Copyright Khronos Group 2014

Progress report on the SYCL vision

Open, royalty-free standard: released

Conformance testsuite: going into adopters package

Open-source implementation: in progress (triSYCL)

Commercial, conformant implementation: in progress

C++ 17 Parallel STL: open-source in progress

• Template libraries for important C++ algorithms: getting going

• Integration into existing parallel C++ libraries: getting going



Building the SYCL for OpenCL ecosystem

• To deliver on the full potential of high-performance heterogeneous systems

- We need the libraries

- We need integrated tools

- We need implementations

- We need training and examples

• An open standard makes it much easier for people to work together

- SYCL is a group effort

- We have designed SYCL for maximum ease of integration



Questions

And maybe some volunteering of joining in to build the ecosystem?




