
Achieving Performance with OpenCL 2.0 on
Intel® Processor Graphics

Robert Ioffe, Sonal Sharma, Michael Stoner

	
 	
 	
 	

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF
SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR
USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND
AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH
MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL
PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.

All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Any code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and
other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code
names is at the sole risk of the user.

Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel representative to obtain Intel’s current plan of record
product roadmaps.

Performance claims: Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. For more information go to
http://www.Intel.com/performance

Intel, Intel Inside, the Intel logo, Centrino, Intel Core, Intel Atom, Pentium, and Ultrabook are trademarks of Intel Corporation in the United States and other countries

Legal

One more short message from our lawyers J
FTC Disclaimer

3

Software and workloads used in performance tests may have been optimized for
performance only on Intel® microprocessors. Performance tests are measured
using specific computer systems, components, software, operations, and
functions. Any change to any of those factors may cause the results to vary. You
should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Acknowledgements
Thanks to Stephen Junkins, Aaron Kunze, Allen Hux, Adam Lake, Michał
Mrozek, Ayal Zaks, Deepti Joshi, Ben Ashbaugh and Yuri Kulakov for input
and feedback on this presentation and GPU-Quicksort sample!

Agenda

 Shared Virtual Memory in OpenCL 2.0

•  Crowd Simulation algorithm
•  Border pixel processing
•  Cyberlink PowerDirector usage

Device Side Enqueue and Work-group Scan Functions in OpenCL 2.0
•  Usage and Benefits
•  Sierpinski Carpet Example
•  GPU-Quicksort Example

5

Shared Virtual Memory

Allows de-referencing of host-
allocated virtual memory
pointers directly on the GPU

Enables GPU offload
of pointer-oriented

algorithms
(e.g. using trees or

linked lists)

SVM buffer SVM buffer

Crowd Simulation Example

What type of algorithm can
actually benefit from SVM?

Crowd Simulation Example

What type of algorithm can
actually benefit from SVM?

Crowd Simulation Example

What type of algorithm can
actually benefit from SVM?

Crowd Simulation Example

What type of algorithm can
actually benefit from SVM?

Crowd Simulation Example

What type of algorithm can
actually benefit from SVM?

Crowd Simulation Example

What type of algorithm can
actually benefit from SVM?

CrowdSim – SVM Illustration

__kernel	

void	
 computeNewVelocity(__global	
 PAgent*	
 agents,	
 …)	

{	

	
 __global	
 Agent*	
 agent	
 =	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

agents[get_global_id(0)].value;	

...	

	
 	

	
 agent-­‐>orcaLines_[agent-­‐>numOrcaLines_++]	
 =	
 line;	

...	

‘orcaLines_’ – pointer to SVM
Ø  Pointer	
 contained	
 in	
 “Agent”	
 struct	

Ø No	
 need	
 for	
 clCreateBuffer(),	
 but	

must	
 use	
 clSetKernelExecInfo()	

Crowd Simulation Performance Gains

Further gains possible with heterogeneous mode,
issuing OpenCL threads concurrently on GPU and CPU

OpenCL	
 GPU	
 vs	
 CPU	

1.2x	
 speedup	
 for	

20000+	
 agents	

SVM ISV usage – Cyberlink Photo Director

CPU/GPU border pixel processing strategy
Ø  Remove	
 border	
 bounds-­‐checks	
 from	
 GPU	
 kernel,	
 process	
 border	
 pixels	
 on	
 the	

CPU	
 in	
 parallel	

C code
(CPU)

OpenCL
code (GPU)

Fine-grain
SVM buffer

5% gain vs. serial
execution

Cyberlink PowerDirector 13 Effects Performance

16 * Permission to share Information from Cyberlink Corp.

SVM Summary

Coarse-grain SVM available on Intel 5th Generation Processors
with HD Graphics 5300+
Ø  Supports	
 virtual-­‐memory	
 pointer	
 access	
 from	
 GPU	
 kernels	

Ø  No	
 longer	
 need	
 to	
 marshal	
 buffers	
 into	
 ‘cl_mem’	
 constructs	

Ø  No	
 alignment	
 or	
 size	
 restricKons	
 to	
 achieve	
 zero-­‐copy	
 buffer	
 sharing	
 	
 	

Fine-grain SVM available in Intel 5th Generation Processors w/ HD
Graphics 5500+
	

SVM samples available on Intel® Developer Zone
Ø  SVM	
 Basic	
 sample	
 	

Ø  CrowdSim	
 coming	
 soon!	

18

Part II:

Device Side Enqueue and Work-group Scan Functions

in OpenCL 2.0

Device Side Enqueue

Device kernels can enqueue kernels to the same device with no host interaction,
enabling flexible work scheduling paradigms and avoiding the need to transfer
execution control and data between the device and host, often significantly
offloading host processor bottlenecks*

Introduced to OpenCL 2.0 to express recursive and iterative algorithms

We are going to use Sierpiński Carpet as a simple example to show all the
building blocks of the device side enqueue

*Khronos	
 Finalizes	
 OpenCL	
 2.0	
 Specifica9on	
 for	
 Heterogeneous	
 Compu9ng	

hMps://www.khronos.org/news/press/khronos-­‐finalizes-­‐opencl-­‐2.0-­‐specificaKon-­‐for-­‐heterogeneous-­‐compuKng	

	

Sierpiński Carpet

The Sierpiński carpet is a plane fractal first described by Wacław Sierpiński in 1916.

Start with a white square.

Divide the square into 9 sub-squares in a 3-by-3 grid

Paint the central sub-square black.

Apply the same procedure recursively to the remaining 8 sub-squares

And so on …

See http://en.wikipedia.org/wiki/Sierpinski_carpet for more info

*	
 Sierpiński	
 Carpet	
 image	
 sequence	
 above	
 from	
 hMp://en.wikipedia.org/wiki/Sierpinski_carpet	
 	

Sierpiński Carpet Kernel in OpenCL 2.0

Easy to translate recursive algorithm
to implementation

Sierpiński Carpet - Result

2187x2187 image: ​𝟖↑𝟔  = 299592 enqueue_kernel calls!

How Recursive Version Compares to Iterative?

23

Recursive: 2050 ms L

Iterative: 11 ms

Solution: combine the two, start w/ recursive, switch to iterative for 243x243 tiles

Mixed version: 10.45 ms J - speedup of 1.05X for 2187 by 2187 image

Speedup improves for larger image sizes: 1.15X for 6561 by 6561 image

 1.23X for 19683 by 19683 image

enqueue_kernel will improve performance when used properly!

GPU-Quicksort - Overview

Invented by Daniel Cederman and Phillipas Tsigas
§  Student and Professor pair

§  At Chalmers University of Technology
§  Invented in 2007, written in CUDA

§  Improves on the work of Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens

First phase:
§  workgroups work on different parts of the same sequence
§  Each workgroup partitions a block assigned to it around the pivot

§  The partitioned blocks are merged
§  The last workgroup writes one or more pivot values between the sequences

§  We repeat the first phase until each subsequence is short enough to be sorted by one workgroup

Second phase:
§  Each workgroup is assigned its own subsequence of <= QUICKSORT_BLOCK_SIZE (e.g. 1536) elements

§  Use explicit work stack to simulate quicksort recursive calls within the kernel
§  Use Bitonic sort when the number of elements in subsequence is <= SORT_THRESHOLD (e.g. 512)

*	
 Photos	
 of	
 Daniel	
 Cederman	
 and	
 Prof.	
 Phillipas	
 Tsigas	
 from	
 their	
 research	
 group’s	
 home	
 page	

GPU-Quicksort in OpenCL 2.0
Switch to work group scan functions

§  work_group_scan_exclusive_add in gqsort_kernel

§  work_group_scan_exclusive_add and
work_group_scan_inclusive_add in lqsort_kernel

§  Performance gain of 8% compared to Blelloch algorithm in 1.2

§  Gain in code conciseness, maintainability and clarity
§  code size reduced almost 3X

Take advantage of enqueue_kernel function

§  Move the logic that calculates block and parent records, sorts the
records after each gqsort_kernel run, and launches either
gqsort_kernel or lqsort_kernel to GPU

§  Dramatically simplify launch from CPU: just relauncher_kernel

§  Simplified gqsort_kernel and lqsort_kernel CPU wrapper code: we
use blocks on GPU

GPU-Quicksort is 44% to 62% faster on Intel HD Graphics
5500 when implemented in OpenCL 2.0 vs OpenCL 1.2!

relauncher_kernel:	

NDRange	
 1

gqsort_kernel:	
 NDRange	

blocks_size*GQSORT_LOCAL_WORKGROUP_SIZE

lqsort_kernel:	
 NDRange	

done_size*LQSORT_LOCAL_WORKGROUP_SIZE

CPU

GPU-Quicksort in OpenCL 2.0 Performance

26

3.17	
 3.05	
 3.26	
 3.24	
 3.37	

3.35	
 3.47	

1.65	

1.90	

2.06	
 2.17	
 2.27	
 2.41	

2.47	

2.66	
 2.75	

3.11	
 3.21	
 3.31	

3.56	
 3.70	

0.00	

1.00	

2.00	

3.00	

4.00	

5.00	

1048576	
 4194304	
 16777216	
 67108864	

HD	
 Graphics	
 5500:	
 Speedup	
 vs	
 std::sort	

X	
 axis	
 -­‐	
 input	
 size,	
 Y	
 axis	
 -­‐	
 speedup	

Parallel	
 CPU-­‐Quicksort	

GPU-­‐Quicksort	
 in	
 OpenCL	
 1.2	

GPU-­‐Quicksort	
 in	
 OpenCL	
 2.0	

3.14	

3.05	

3.31	
 3.24	
 3.34	

3.39	
 3.46	

3.29	
 3.86	

4.23	

4.60	

4.76	
 4.98	
 4.95	

4.02	

4.17	

4.60	

4.82	

5.04	

5.31	
 5.34	

0.00	

1.00	

2.00	

3.00	

4.00	

5.00	

1048576	
 4194304	
 16777216	
 67108864	

HD	
 Graphics	
 6000:	
 Speedup	
 vs	
 std::sort	

X	
 axis	
 -­‐	
 input	
 size,	
 Y	
 axis	
 -­‐	
 speedup	

Parallel	
 CPU-­‐Quicksort	

GPU-­‐Quicksort	
 in	
 OpenCL	
 1.2	

GPU-­‐Quicksort	
 in	
 OpenCL	
 2.0	

Conclusions
Device side enqueue is a powerful addition to the OpenCL programmer toolbox
§  Provides the ability to port recursive and iterative algorithms to OpenCL

§  Might dramatically improve performance when used properly

§  Syntactically comparable to CUDA’s dynamic parallelism feature

enqueue_kernel and more available in Intel’s OpenCL 2.0 driver

GPU-Quicksort for OpenCL 1.2 runs very well on Intel® Processor Graphics

GPU-Quicksort for OpenCL 2.0 runs even better
§  Due to optimized work group scan functions

§  Due to enqueue_kernel functions, which avoid round trips to the CPU

Intel HD Graphics 5500 with Intel’s OpenCL 2.0 driver is a
powerful platform for writing high performance algorithms!

Key Takeaways

28

SVM
•  Use it for all your shared pointy data structure needs
•  Coarse grain and Fine grain flavors w/ atomics are available on Intel’s 5th

Generation Processors

Device side enqueue
•  Use it to implement and port high-performance recursive and iterative

algorithms
•  Avoid round-trips to the host

New work group functions
•  Simplify you code for scan, reduce and other common group ops
•  Use high-performance implementations optimized for Intel hardware

GPU-Quicksort Bibliography
“My Early Days at Elliots” by Tony Hoare http://www.cs.man.ac.uk/CCS/res/res48.htm

Partition by C.A.R.Hoare. Communications of the ACM, Volume 4 Issue 7, July 1961 http://dl.acm.org/citation.cfm?doid=366622.366642

Quicksort by C.A.R.Hoare. Communications of the ACM, Volume 4 Issue 7, July 1961 http://dl.acm.org/citation.cfm?doid=366622.366644

“Implementing Quicksort programs” by Robert Sedgewick. Communications of the ACM, Volume 21 Issue 10, Oct. 1978
http://dl.acm.org/citation.cfm?doid=359619.359631

Sorting algorithms/Quicksort http://rosettacode.org/wiki/Sorting_algorithms/Quicksort

“Scan Primitives for GPU Computing” by Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens, Graphics Hardware 2007,
pages 97--106, August 2007. http://www.idav.ucdavis.edu/publications/print_pub?pub_id=915

Cederman, D. and Tsigas, P. 2009. GPU-Quicksort: A practical Quicksort algorithm for graphics processors. ACM J. Exp. Algor. 14, Article
1.4 (July 2009), 24 pages http://dl.acm.org/citation.cfm?id=1564500

Quicksort at Wikipedia, http://en.wikipedia.org/wiki/Quicksort

GPU-Quicksort in OpenCL 2.0,
https://software.intel.com/en-us/articles/gpu-quicksort-in-opencl-20-using-nested-parallelism-and-work-group-scan-functions

Sierpiński Carpet in OpenCL 2.0, https://software.intel.com/en-us/articles/sierpinski-carpet-in-opencl-20

