Oclgrind: An Extensible
OpenCL Device
Simulator

James Price & Simon Mcintosh-Smith
University of Bristol - High Performance Computing Group

% University of UOB
BRISTOL

Funded in part by Imagination Technologies

http://uob-hpc.github.io

Overview

Simulates OpenCL kernels executing on a virtual
OpenCL device

Architecture-agnostic simulation

Built on an interpreter for LLVM/SPIR 1.2

Plugin interface delivers extensibility

Abstract Simulation

 Doesn’'t model any specific architectural
characteristics

e Simulates kernel execution with respect to the
OpenCL execution and memory models

 Understands concepts such as work-items, work-
groups, and the different address spaces

OpenCL Runtime API

* Provides a comprehensive implementation of the
OpenCL 1.2 runtime AP

e This allows existing OpenCL applications to target
Oclgrind without the need for modifications

* Accepts OpenCL programs as either OpenCL C
source or SPIR 1.2 binaries

Single Kernel Interface

 Provides an interface to run individual kernels

* Simple configuration file describes kernel launch
configuration and arguments

e Useful when analysing a specitic kernel in a large
application

Standalone Kernels

OpenCL C
Kernel

OpenCL OpenCL

Application | | Application

with with SPIR Standalone Kernels
OpenCL C kernels

kernels .
DSLs
C++ AMP
SYCL - OpenCL C SPIR
Kernel Kernel

Plugin Interface

Delivers extensibility

Plugins can be registered with Oclgrind to receive
information about the simulation via callbacks

Allows third-party developers to build tools on top
of the simulator

Plugins are passive

Plugin Callbacks

Kernel begin/end
Work-item/work-group begin/end
Instruction executed

Memory allocated/deallocated
Memory load/store/atomic

Work-group barrier

#include "oclgrind/Context.h"
#include "oclgrind/Plugin.h"
#include "oclgrind/WorkItem.h"

class InstPrinter : public oclgrind: :Plugin
{
public:
InstPrinter (const oclgrind: :Context *context)
oclgrind: :Plugin (context) {};
void instructionExecuted (const oclgrind: :WorkItem *workItem,
const llvm: :Instruction *instruction,
const oclgrind: :TypedValue& result)

{
std: :cout << "Work-Item " << workItem->getGlobalID() << ": '";

oclgrind: :dumpInstruction(std: :cout, instruction);
std: :cout << std::endl;

Memory Access Checking

Checks addresses used by load/store instructions

Informs user when OpenCL kernels access invalid memory
locations

Also checks for violations of CL_MEM_READ_ONLY/WRITE_ONLY

Finding bugs in real programs:
- CloverLeaf
- Parboll

- ViennaCL

Data-race Detection

e Keep track of when memory locations are read/
written by work-items

 Handle synchronisation at work-group barriers

e Inform user when data-races are observed

Interactive Debugging

Provides a GDB-style interactive debugging
interface

Source line debugging of OpenCL C kernels

Set breakpoints, inspect variables and memory,
switch between work-items

Automatically breaks when other plugins detect
errors

Memory Profiling (SYCL)

* Implemented by Codeplay

e Uses Oclgrind to gather information about memory
accesses within SYCL programs (via SPIR)

e Microsoft Visual Studio plugin to visualise these
memory accesses, relating them back to the
original source code

series:

operation type: store global

X: 2

y: 0100

size: 4

file name: C\SYCLONE\sample_code\opencl_c_interop\opencl_c_interop.cpp
line number: 100

power usage: 0

Other Features

Detecting work-group divergence

Detecting unaligned memory accesses
Generating histograms of instructions executed
Detecting other miscellaneous kernel errors

Useful diagnostics for OpenCL runtime API errors

More Information

Open source (GitHub)
BSD license
Compatible with Linux, Mac and Windows

Feedback and contributions welcome (bug reports,
oull requests, feature requests)

https://github.com/jrprice/Oclgrind/wiki/

