
Oclgrind: An Extensible
OpenCL Device

Simulator
James Price & Simon McIntosh-Smith

University of Bristol - High Performance Computing Group
http://uob-hpc.github.io

Funded in part by Imagination Technologies

http://uob-hpc.github.io

Overview

• Simulates OpenCL kernels executing on a virtual
OpenCL device

• Architecture-agnostic simulation

• Built on an interpreter for LLVM/SPIR 1.2

• Plugin interface delivers extensibility

Abstract Simulation

• Doesn’t model any specific architectural
characteristics

• Simulates kernel execution with respect to the
OpenCL execution and memory models

• Understands concepts such as work-items, work-
groups, and the different address spaces

OpenCL Runtime API

• Provides a comprehensive implementation of the
OpenCL 1.2 runtime API

• This allows existing OpenCL applications to target
Oclgrind without the need for modifications

• Accepts OpenCL programs as either OpenCL C
source or SPIR 1.2 binaries

• Provides an interface to run individual kernels

• Simple configuration file describes kernel launch
configuration and arguments

• Useful when analysing a specific kernel in a large
application

Single Kernel Interface

Single Kernel Interface

• Provides an interface to run individual kernels

• Simple configuration file describes kernel launch
configuration and arguments

• Useful when analysing a specific kernel in a large
application

vecadd.cl # File containing OpenCL program
vecadd # Name of kernel to run
1024 1 1 # NDRange
 16 1 1 # Work-group size

First argument 'global int *a'
<size=4096 range=0:1:4095>

Second argument 'global int *b'
<size=4096 range=4096:1:8191>

Third argument 'global int *c'
<size=4096 fill=0 dump>

Fourth argument 'int size'
<size=4>
1024

 …
Oclgrind PluginOclgrind Plugin

Oclgrind Plugin
Oclgrind Plugin

Plugin Interface
• Delivers extensibility

• Plugins can be registered with Oclgrind to receive
information about the simulation via callbacks

• Allows third-party developers to build tools on top
of the simulator

• Plugins are passive

Plugin Callbacks
• Kernel begin/end

• Work-item/work-group begin/end

• Instruction executed

• Memory allocated/deallocated

• Memory load/store/atomic

• Work-group barrier

Plugin Callbacks
• Kernel begin/end

• Work-item/work-group begin/end

• Instruction executed

• Memory allocated/deallocated

• Memory load/store/atomic

• Work-group barrier

#include "oclgrind/Context.h"
#include "oclgrind/Plugin.h"
#include "oclgrind/WorkItem.h"

class InstPrinter : public oclgrind::Plugin
{
public:
 InstPrinter(const oclgrind::Context *context)
 : oclgrind::Plugin(context){};
 void instructionExecuted(const oclgrind::WorkItem *workItem,
 const llvm::Instruction *instruction,
 const oclgrind::TypedValue& result)
 {
 std::cout << "Work-Item " << workItem->getGlobalID() << ": ";
 oclgrind::dumpInstruction(std::cout, instruction);
 std::cout << std::endl;
 }
};

Memory Access Checking
• Checks addresses used by load/store instructions

• Informs user when OpenCL kernels access invalid memory
locations

• Also checks for violations of CL_MEM_READ_ONLY/WRITE_ONLY

• Finding bugs in real programs:

- CloverLeaf

- Parboil

- ViennaCL

Memory Access Checking
• Checks addresses used by load/store instructions

• Informs user when OpenCL kernels access invalid memory
locations

• Finding bugs in real programs:

- CloverLeaf

- Parboil

- ViennaCL

• Also checks for violations of CL_MEM_READ_ONLY/WRITE_ONLY

Invalid write of size 4 at global memory address 0x3000000000010
 Kernel: write_out_of_bounds
 Entity: Global(4,0,0) Local(4,0,0) Group(0,0,0)
 store i32 %tmp15, i32 addrspace(1)* %tmp19, align 4, !dbg !24
 At line 4 of input.cl:
 c[i] = a[i] + b[i]

Data-race Detection

• Keep track of when memory locations are read/
written by work-items

• Handle synchronisation at work-group barriers

• Inform user when data-races are observed

Data-race Detection

• Keep track of when memory locations are read/
written by work-items

• Handle synchronisation at work-group barriers

• Inform user when data-races are observed

Read-write data race at global memory address 0x1000000000004
 Kernel: global_read_write_race

 First entity: Global(2,0,0) Local(0,0,0) Group(2,0,0)
 %tmp11 = load i32 addrspace(1)* %tmp10, align 4, !dbg !23
 At line 6 of input.cl:
 data[i] = data[i-1];

 Second entity: Global(1,0,0) Local(0,0,0) Group(1,0,0)
 store i32 %tmp11, i32 addrspace(1)* %tmp15, align 4, !dbg !23
 At line 6 of input.cl:
 data[i] = data[i-1];

Interactive Debugging
• Provides a GDB-style interactive debugging

interface

• Source line debugging of OpenCL C kernels

• Set breakpoints, inspect variables and memory,
switch between work-items

• Automatically breaks when other plugins detect
errors

Memory Profiling (SYCL)

• Implemented by Codeplay

• Uses Oclgrind to gather information about memory
accesses within SYCL programs (via SPIR)

• Microsoft Visual Studio plugin to visualise these
memory accesses, relating them back to the
original source code

Memory Profiling (SYCL)

• Implemented by Codeplay

• Uses Oclgrind to gather information about memory
accesses within SYCL programs (via SPIR)

• Microsoft Visual Studio plugin to visualise these
memory accesses, relating them back to the
original source code

Other Features
• Detecting work-group divergence

• Detecting unaligned memory accesses

• Generating histograms of instructions executed

• Detecting other miscellaneous kernel errors

• Useful diagnostics for OpenCL runtime API errors

More Information
• Open source (GitHub)

• BSD license

• Compatible with Linux, Mac and Windows

• Feedback and contributions welcome (bug reports,
pull requests, feature requests)

https://github.com/jrprice/Oclgrind/

https://github.com/jrprice/Oclgrind/wiki/

