
Emulating Command Buffer Extensions

with OpenCL Layers

James Brodman, Intel Corporation

Ben Ashbaugh (Intel), Ewan Crawford (Codeplay)

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 2

OpenCL Command Buffers were provisionally
released November 2021!

… but implementation support remains low

(Data from opencl.gpuinfo.org, March 2024)

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 3

• Some OpenCL extensions take a long time to implement

• Some OpenCL devices may never support an OpenCL extension

• Lack of implementations hinders adoption:
• Applications won’t support an extension without implementations

• Other implementors won’t support an extension without applications

• We need a way to break this cycle!
• Improve developer confidence that a feature will be available

• Provide a competent fallback when an implementation is unavailable

Problem Statement

We implemented support for command buffers in an OpenCL
layer, demonstrating one way to break the cycle.

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 4

Prior Work

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 5

• The OpenCL Intercept Layer
can emulate some OpenCL
extensions

• How does this work?
• Augment existing APIs, e.g.
clGetDeviceInfo

• Implement new APIs by hooking
clGetExtensionFunctionAddress

• Functional, but a heavyweight
solution

OpenCL Intercept Layer

https://github.com/intel/opencl-intercept-
layer/blob/main/docs/controls.md#controls-for-

emulating-features

https://github.com/intel/opencl-intercept-layer/blob/main/docs/controls.md#controls-for-emulating-features
https://github.com/intel/opencl-intercept-layer/blob/main/docs/controls.md#controls-for-emulating-features
https://github.com/intel/opencl-intercept-layer/blob/main/docs/controls.md#controls-for-emulating-features

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 6

• Installable OpenCL Layers can
also intercept and augment
OpenCL functions

• Lighter weight, easy to enable
and disable individual layers

• Most prior work for tracing and
validation
• No (known) prior work to

emulate extensions

• We decided to try this
mechanism – and it worked!

Installable OpenCL Layers

From: https://github.com/Kerilk/OpenCL-Layers-
Tutorial/blob/main/presentation/LayersForOpenCL.pdf

(IWOCL 2021)

https://github.com/Kerilk/OpenCL-Layers-Tutorial/blob/main/presentation/LayersForOpenCL.pdf
https://github.com/Kerilk/OpenCL-Layers-Tutorial/blob/main/presentation/LayersForOpenCL.pdf

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 7

How the Emulation Layer Works

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 8

1. Emulation Functions: new
functionality, implemented
entirely within the layer

Three Classes of Layer Functions

cl_int CL_API_CALL clCommandBarrierWithWaitListKHR_EMU(

cl_command_buffer_khr cmdbuf,

cl_command_queue command_queue,

cl_uint num_sync_points_in_wait_list,

const cl_sync_point_khr* sync_point_wait_list,

cl_sync_point_khr* sync_point,

cl_mutable_command_khr* mutable_handle)

{

if (!CommandBuffer::isValid(cmdbuf)) {

return CL_INVALID_COMMAND_BUFFER_KHR;

}

if (cl_int errorCode = cmdbuf->checkRecordErrors(

command_queue,

num_sync_points_in_wait_list,

sync_point_wait_list,

mutable_handle)) {

return errorCode;

}

cmdbuf->addCommand(

BarrierWithWaitList::create(cmdbuf, command_queue),

num_sync_points_in_wait_list,

sync_point_wait_list,

sync_point,

mutable_handle);

return CL_SUCCESS;

}

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 9

1. Emulation Functions: new
functionality, implemented
entirely within the layer

2. Override Functions: add
functionality in some cases,
otherwise pass along

Three Classes of Layer Functions

static cl_int CL_API_CALL clGetDeviceInfo_layer(

cl_device_id device,

cl_device_info param_name,

size_t param_value_size,

void* param_value,

size_t* param_value_size_ret)

{

cl_int errorCode = CL_SUCCESS;

if (clGetDeviceInfo_override(

device,

param_name,

param_value_size,

param_value,

param_value_size_ret,

&errorCode) == false) {

return g_pNextDispatch->clGetDeviceInfo(

device,

param_name,

param_value_size,

param_value,

param_value_size_ret);

}

return errorCode;

}

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 10

1. Emulation Functions: new
functionality, implemented
entirely within the layer

2. Override Functions: add
functionality in some cases,
otherwise pass along

3. Bookkeeping Functions:
record some info, then
unconditionally pass along

Three Classes of Layer Functions

static cl_int CL_API_CALL clReleaseEvent_layer(

cl_event event)

{

cl_uint refCount = 0;

g_pNextDispatch->clGetEventInfo(

event,

CL_EVENT_REFERENCE_COUNT,

sizeof(refCount),

&refCount,

nullptr);

if (refCount == 1) {

auto& context = getLayerContext();

auto it = context.EventMap.find(event);

if (it != context.EventMap.end()) {

g_pNextDispatch->clReleaseEvent(it->second);

context.EventMap.erase(it);

}

}

return g_pNextDispatch->clReleaseEvent(event);

}

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 11

• Record each command in the
command buffer
• Plus, any arguments

• Plus, some bookkeeping info

• Notes:
• Need to retain OpenCL objects!

• Need to clone OpenCL kernels
to preserve kernel args!

Command Buffer Construction “Records” Commands
struct CopyBuffer : Command

{

static std::unique_ptr<CopyBuffer> create(

cl_command_buffer_khr cmdbuf, cl_command_queue queue,

cl_mem src_buffer, cl_mem dst_buffer,

size_t src_offset, size_t dst_offset,

size_t size)

{

auto ret = std::unique_ptr<CopyBuffer>(

new CopyBuffer(cmdbuf, queue));

ret->src_buffer = src_buffer;

ret->dst_buffer = dst_buffer;

ret->src_offset = src_offset;

ret->dst_offset = dst_offset;

ret->size = size;

g_pNextDispatch->clRetainMemObject(ret->src_buffer);

g_pNextDispatch->clRetainMemObject(ret->dst_buffer);

return ret;

}

// <snip>

cl_mem src_buffer = nullptr;

cl_mem dst_buffer = nullptr;

size_t src_offset = 0;

size_t dst_offset = 0;

size_t size = 0;

private:

CopyBuffer(

cl_command_buffer_khr cmdbuf,

cl_command_queue queue) : Command(cmdbuf, queue, CL_COMMAND_COPY_BUFFER) {};

};

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 12

• Enqueues each recorded
command into the provided
command queue

• Notes:
• Need to map sync points to

events

• May need to insert command
queue barriers in some cases
(not shown)

Command Buffer Enqueue “Plays Back” Commands

struct CopyBuffer : Command

{

// <snip>

int playback(

cl_command_queue queue,

std::vector<cl_event>& deps) const override

{

auto wait_list = getEventWaitList(deps);

auto signal = getEventSignalPtr(deps);

return g_pNextDispatch->clEnqueueCopyBuffer(

queue,

src_buffer,

dst_buffer,

src_offset,

dst_offset,

size,

static_cast<cl_uint>(wait_list.size()),

wait_list.data(),

signal);

}

// <snip>

};

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 13

Brief Retrospective

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 14

• OpenCL installable layer mechanism is solid!

• Many OpenCL features make layering easy:
• Built-in Reference Counting and Object Queries

• clCloneKernel to Clone Kernels and their Arguments

Most things went well!

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 15

• How can we do event profiling for command buffers?
• Need to profile a group of commands

• Solution: add barriers with event profiling

Some things were tricky…

Start
Barrier

End
Barrier

Command Buffer

A B
C

D
E

F

G

Use this event for:
CL_PROFILING_COMMAND_QUEUED,
CL_PROFILING_COMMAND_SUBMIT,
CL_PROFILING_COMMAND_START

Use this event for:
CL_PROFILING_COMMAND_END

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 16

Verdict: Success!

Host API Execution Time

Device Execution Time

(Data collected with the OpenCL Intercept Layer, IWOCL 2018)

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 17

• How can we do error checking when commands
are recorded?

Some things were tricky…

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 18

Setup:

1. Create a “Test Queue” when
command buffer is created

2. Also, create a “Blocking Event”
when command buffer is created

3. Enqueue a Barrier dependent on
the “Blocking Event”

Recording:

4. Enqueue commands to “Test
Queue” before recording
• Command does not execute due to

barrier dependency

• But error checking is performed!

Finalization:

5. Set “Blocking Event” to error state
when command buffer is finalized
• All dependent command discarded!

Tentative Solution:

Test Queue
Start

Barrier

Blocking
Event

A B …

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 19

• Relies on tricky behavior / dusty corners of the spec

• Still in a branch, probably will not be enabled by default

Verdict: Partial Success?

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 20

• How can we track command buffer states?
• RECORDING is straightforward…

• EXECUTABLE is straightforward, too…

• PENDING is complicated!

• No current solution

• Possibility:
• Track event for the last enqueue, test if it is COMPLETE?

• Might work, but adds complexity and overhead

Some things were tricky…

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 21

• The PENDING state is the only layer CTS failure!

• Nice to fix, but probably doesn’t affect much code
in practice…

Some things were tricky…

$./test_conformance/extensions/cl_khr_command_buffer/test_cl_khr_command_buffer info_state

Initializing random seed to 0.

Requesting Default device based on command line for platform index 3 and device index 0

Compute Device Name = Intel(R) UHD Graphics 770, Compute Device Vendor = Intel(R) Corporation, Compute Device Version = OpenCL 3.0 NEO , CL C Version
= OpenCL C 1.2

Device latest conformance version passed: v2023-05-16-00

Supports single precision denormals: YES

sizeof(void*) = 8 (host)

sizeof(void*) = 8 (device)

info_state...

ERROR: Unexpected result of CL_COMMAND_BUFFER_STATE_KHR query!! (!(state == expected) from /home/bashbaug/git/OpenCL-
CTS/test_conformance/extensions/cl_khr_command_buffer/command_buffer_get_command_buffer_info.cpp:222)

ERROR: verify_state failed! ((unknown) from /home/bashbaug/git/OpenCL-
CTS/test_conformance/extensions/cl_khr_command_buffer/command_buffer_get_command_buffer_info.cpp:260)

ERROR: RunStateInfoTest failed! ((unknown) from /home/bashbaug/git/OpenCL-
CTS/test_conformance/extensions/cl_khr_command_buffer/command_buffer_get_command_buffer_info.cpp:69)

ERROR: Test Failed! ((unknown) from /home/bashbaug/git/OpenCL-CTS/test_conformance/extensions/cl_khr_command_buffer/basic_command_buffer.h:105)

info_state FAILED

PASSED sub-test.

FAILED test.

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 22

Current Usage Examples

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 23

Conformance Test Suite Development

Develop and debug the
CTS on any device!

Bonus: CTS found a few
bugs in the layer, too…

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 24

• cl_khr_command_buffer is a base specification,
designed to support additional functionality via
layered extensions
• Examples:

• cl_khr_command_buffer_multi_device

• cl_khr_command_buffer_mutable_dispatch

• cl_khr_command_buffer_mutable_memory_commands

Layered Extension Development

Emulation layer provides a convenient mechanism to quickly
prototype layered extensions!

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 25

• SYCL Graph is an experimental oneAPI extension to build and
execute entire graphs of commands:

• For OpenCL backends, graphs are recorded into command buffers

High-Level Language Feature Development

(Diagram from “Towards Deferred Execution of a SYCL Command Graph”, IWOCL 2023)

Emulation layer provides a convenient mechanism to develop,
debug, and test the SYCL Graph extension!

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 26

A Brief Look at Performance

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 27

• Is the layer expensive?
• How does layer performance

compare to non-command
buffer performance?

• Test Parameters:
• Submission time or

completion time?

• How many kernels?

• Is the layer effective?
• How does layer performance

compare to native command
buffer performance?

• Test Parameters:
• Submission time or

completion time?

• How many kernels?

• In-order or out-of-order?

Key Performance Questions

Developed microbenchmarks to answer these questions!

(“How to Optimize Compute Drivers? Let’s Start with Writing Good Benchmarks!”, IWOCL 2022)

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 28

• Enqueue N kernels directly?

• Or enqueue N kernels in a Command Buffer?

• Measure submission time or completion time

Microbenchmark #1: ExecuteCommandBuffer

Command Buffer

K0 K1 K2 … Kn

K0 K1 K2 … Kn

https://github.com/bashbaug/compute-benchmarks/blob/micros-for-iwocl-2024/source/benchmarks/
api_overhead_benchmark/implementations/ocl/execute_command_buffer_ocl.cpp

https://github.com/bashbaug/compute-benchmarks/blob/micros-for-iwocl-2024/source/benchmarks/api_overhead_benchmark/implementations/ocl/execute_command_buffer_ocl.cpp

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 29

0%

20%

40%

60%

80%

100%

120%

NVIDIA GeForce RTX 3060 POCL Intel(R) Arc(TM) A750 Graphics Intel(R) UHD Graphics 770 oneAPI Construction Kit

Command Buffer Execution Time With Layer

(Normalized to Non-Command Buffer Time, Lower Is Better)

Submisison Time Completion Time

ExecuteCommandBuffer Results

Generally, no layer penalty!

Submission Time: ExecuteCommandBuffer(api=ocl UseCommandBuffers=1 NumKernels=10 KernelExecutionTime=1 MeasureCompletionTime=0)
Completion Time: ExecuteCommandBuffer(api=ocl UseCommandBuffers=1 NumKernels=10 KernelExecutionTime=1 MeasureCompletionTime=1)

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 30

ExecuteCommandBuffer Results

0%

20%

40%

60%

80%

100%

120%

POCL oneAPI Construction Kit

Command Buffer Execution Time Without Layer

(Normalized to Layer Time, Lower Is Better)

Submission Time Completion Time

Bug reported!
Native implementation faster:

Layer performance is acceptable.

Submission Time: ExecuteCommandBuffer(api=ocl UseCommandBuffers=1 NumKernels=10 KernelExecutionTime=1 MeasureCompletionTime=0)
Completion Time: ExecuteCommandBuffer(api=ocl UseCommandBuffers=1 NumKernels=10 KernelExecutionTime=1 MeasureCompletionTime=1)

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 31

Summary and Conclusion

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 32

• Successfully emulated command buffers with an OpenCL layer!
• Almost all features are implemented, layer is almost conformant

• Command buffer emulation layer is useful!
• Accelerates layered extension design and development
• Accelerates CTS development
• Accelerates SYCL Graph development
• Handy alternative for debugging and performance analysis

• OpenCL layer mechanism is robust, performant, and capable
• Consider emulation for future extensions to improve adoption?

• Thank you!

Summary and Conclusion

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 33

© Intel Corporation. Intel, the Intel logo, and other Intel marks are
trademarks of Intel Corporation or its subsidiaries. Other names
and brands may be claimed as the property of others.

Disclaimers

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 34

• Command Buffer Emulation Layer
• https://github.com/bashbaug/SimpleOpenCLSamples/tree/main/layers/10_cmdbufemu

• Command Buffer Microbenchmarks
• https://github.com/bashbaug/compute-benchmarks/tree/micros-for-iwocl-2024

• Referenced IWOCL Presentations
• Layers for OpenCL (IWOCL 2021) (slides)

• Debugging and Analyzing Programs Using the Intercept Layer for OpenCL
Applications (IWOCL 2018) (slides)

• Towards Deferred Execution of a SYCL Command Graph (IWOCL 2023) (slides)

• How to Optimize Compute Drivers? Let’s Start with Writing Good Benchmarks!
(IWOCL 2022) (slides)

Related Links and References

https://github.com/bashbaug/SimpleOpenCLSamples/tree/main/layers/10_cmdbufemu
https://github.com/bashbaug/compute-benchmarks/tree/micros-for-iwocl-2024
https://github.com/Kerilk/OpenCL-Layers-Tutorial/blob/main/presentation/LayersForOpenCL.pdf
https://www.iwocl.org/wp-content/uploads/iwocl-2018-intel-debug-analyze-intercept-layer.pdf
https://www.iwocl.org/wp-content/uploads/iwocl-2023-Ewan-Crawford-4608.pdf
https://www.iwocl.org/wp-content/uploads/42-presentation-iwocl-syclcon-2022-mrozek.pdf

Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 35

System Configuration

Host:

OS: Linux bashbaug-newpc 6.5.0-26-generic #26~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Mar 12 10:22:43 UTC
2 x86_64 x86_64 x86_64 GNU/Linux

CPU: 12th Gen Intel(R) Core(TM) i9-12900K

Drivers:

NVIDIA GeForce RTX 3060 535.86.10

Intel(R) Arc(TM) A750 Graphics 24.09.28717.12

Intel(R) UHD Graphics 770 24.09.28717.12

POCL PoCL 5.0 Linux, RelWithDebInfo, RELOC, SPIR, SPIR-V, LLVM 14.0.0, SLEEF, POCL_DEBUG
(built from tag v5.0, commit 0bffce0)

oneAPI Construction Kit ComputeAorta 4.0.0 Linux x86_64 (RelWithDebInfo, 85dfbf7e)
(built from commit 85dfbf7, with LLVM 19.0.0)

Software:

Emulation Layer (built from commit 80222e5)

Compute-Benchmarks (built from commit 17b58e0)

https://github.com/intel/compute-runtime/releases/tag/24.09.28717.12
https://github.com/intel/compute-runtime/releases/tag/24.09.28717.12
https://github.com/pocl/pocl/releases/tag/v5.0
https://github.com/pocl/pocl/commit/0bffce03b71c2be14ced90019418e943fd770114
https://github.com/codeplaysoftware/oneapi-construction-kit/commit/85dfbf7e8c70e01b37daea0dee20e89ccd7af5f7
https://github.com/bashbaug/SimpleOpenCLSamples/commit/80222e57d7f71616c4b4d30eb5bb79fed7b2a053
https://github.com/bashbaug/compute-benchmarks/commit/17b58e0d25b4481d79178db8d9da2ca4e4d65b03

	Default Section
	Slide 1

	Problem Statement
	Slide 2: OpenCL Command Buffers were provisionally released November 2021!
	Slide 3: Problem Statement

	Prior Work
	Slide 4: Prior Work
	Slide 5: OpenCL Intercept Layer
	Slide 6: Installable OpenCL Layers

	Architecture
	Slide 7: How the Emulation Layer Works
	Slide 8: Three Classes of Layer Functions
	Slide 9: Three Classes of Layer Functions
	Slide 10: Three Classes of Layer Functions
	Slide 11: Command Buffer Construction “Records” Commands
	Slide 12: Command Buffer Enqueue “Plays Back” Commands

	Brief Retrospective
	Slide 13: Brief Retrospective
	Slide 14: Most things went well!
	Slide 15: Some things were tricky…
	Slide 16: Verdict: Success!
	Slide 17: Some things were tricky…
	Slide 18: Tentative Solution:
	Slide 19: Verdict: Partial Success?
	Slide 20: Some things were tricky…
	Slide 21: Some things were tricky…

	Usage Examples
	Slide 22: Current Usage Examples
	Slide 23: Conformance Test Suite Development
	Slide 24: Layered Extension Development
	Slide 25: High-Level Language Feature Development

	Performance
	Slide 26: A Brief Look at Performance
	Slide 27: Key Performance Questions
	Slide 28: Microbenchmark #1: ExecuteCommandBuffer
	Slide 29: ExecuteCommandBuffer Results
	Slide 30: ExecuteCommandBuffer Results

	Summary
	Slide 31: Summary and Conclusion
	Slide 32: Summary and Conclusion

	Backup
	Slide 33: Disclaimers
	Slide 34: Related Links and References
	Slide 35: System Configuration
	Slide 36

