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OpenCL Command Buffers were provisionally 
released November 2021!

… but implementation support remains low

(Data from opencl.gpuinfo.org, March 2024)
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• Some OpenCL extensions take a long time to implement

• Some OpenCL devices may never support an OpenCL extension

• Lack of implementations hinders adoption:
• Applications won’t support an extension without implementations

• Other implementors won’t support an extension without applications

• We need a way to break this cycle!
• Improve developer confidence that a feature will be available

• Provide a competent fallback when an implementation is unavailable

Problem Statement

We implemented support for command buffers in an OpenCL 
layer, demonstrating one way to break the cycle.
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Prior Work
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• The OpenCL Intercept Layer 
can emulate some OpenCL 
extensions

• How does this work?
• Augment existing APIs, e.g. 
clGetDeviceInfo

• Implement new APIs by hooking 
clGetExtensionFunctionAddress

• Functional, but a heavyweight 
solution

OpenCL Intercept Layer

https://github.com/intel/opencl-intercept-
layer/blob/main/docs/controls.md#controls-for-

emulating-features

https://github.com/intel/opencl-intercept-layer/blob/main/docs/controls.md#controls-for-emulating-features
https://github.com/intel/opencl-intercept-layer/blob/main/docs/controls.md#controls-for-emulating-features
https://github.com/intel/opencl-intercept-layer/blob/main/docs/controls.md#controls-for-emulating-features


Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 6

• Installable OpenCL Layers can 
also intercept and augment 
OpenCL functions

• Lighter weight, easy to enable 
and disable individual layers

• Most prior work for tracing and 
validation
• No (known) prior work to 

emulate extensions

• We decided to try this 
mechanism – and it worked!

Installable OpenCL Layers

From: https://github.com/Kerilk/OpenCL-Layers-
Tutorial/blob/main/presentation/LayersForOpenCL.pdf

(IWOCL 2021)

https://github.com/Kerilk/OpenCL-Layers-Tutorial/blob/main/presentation/LayersForOpenCL.pdf
https://github.com/Kerilk/OpenCL-Layers-Tutorial/blob/main/presentation/LayersForOpenCL.pdf
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How the Emulation Layer Works
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1. Emulation Functions: new 
functionality, implemented 
entirely within the layer

Three Classes of Layer Functions

cl_int CL_API_CALL clCommandBarrierWithWaitListKHR_EMU(

cl_command_buffer_khr cmdbuf,

cl_command_queue command_queue,

cl_uint num_sync_points_in_wait_list,

const cl_sync_point_khr* sync_point_wait_list,

cl_sync_point_khr* sync_point,

cl_mutable_command_khr* mutable_handle)

{

if (!CommandBuffer::isValid(cmdbuf)) {

return CL_INVALID_COMMAND_BUFFER_KHR;

}

if (cl_int errorCode = cmdbuf->checkRecordErrors(

command_queue,

num_sync_points_in_wait_list,

sync_point_wait_list,

mutable_handle)) {

return errorCode;

}

cmdbuf->addCommand(

BarrierWithWaitList::create(cmdbuf, command_queue),

num_sync_points_in_wait_list,

sync_point_wait_list,

sync_point,

mutable_handle);

return CL_SUCCESS;

}
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1. Emulation Functions: new 
functionality, implemented 
entirely within the layer

2. Override Functions: add 
functionality in some cases, 
otherwise pass along

Three Classes of Layer Functions

static cl_int CL_API_CALL clGetDeviceInfo_layer(

cl_device_id device,

cl_device_info param_name,

size_t param_value_size,

void* param_value,

size_t* param_value_size_ret)

{

cl_int errorCode = CL_SUCCESS;

if (clGetDeviceInfo_override(

device,

param_name,

param_value_size,

param_value,

param_value_size_ret,

&errorCode) == false) {

return g_pNextDispatch->clGetDeviceInfo(

device,

param_name,

param_value_size,

param_value,

param_value_size_ret);

}

return errorCode;

}
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1. Emulation Functions: new 
functionality, implemented 
entirely within the layer

2. Override Functions: add 
functionality in some cases, 
otherwise pass along

3. Bookkeeping Functions: 
record some info, then 
unconditionally pass along

Three Classes of Layer Functions

static cl_int CL_API_CALL clReleaseEvent_layer(

cl_event event)

{

cl_uint refCount = 0;

g_pNextDispatch->clGetEventInfo(

event,

CL_EVENT_REFERENCE_COUNT,

sizeof(refCount),

&refCount,

nullptr);

if (refCount == 1) {

auto& context = getLayerContext();

auto it = context.EventMap.find(event);

if (it != context.EventMap.end()) {

g_pNextDispatch->clReleaseEvent(it->second);

context.EventMap.erase(it);

}

}

return g_pNextDispatch->clReleaseEvent(event);

}
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• Record each command in the 
command buffer
• Plus, any arguments

• Plus, some bookkeeping info

• Notes:
• Need to retain OpenCL objects!

• Need to clone OpenCL kernels 
to preserve kernel args!

Command Buffer Construction “Records” Commands
struct CopyBuffer : Command

{

static std::unique_ptr<CopyBuffer> create(

cl_command_buffer_khr cmdbuf, cl_command_queue queue,

cl_mem src_buffer, cl_mem dst_buffer,

size_t src_offset, size_t dst_offset,

size_t size)

{

auto ret = std::unique_ptr<CopyBuffer>(

new CopyBuffer(cmdbuf, queue));

ret->src_buffer = src_buffer;

ret->dst_buffer = dst_buffer;

ret->src_offset = src_offset;

ret->dst_offset = dst_offset;

ret->size = size;

g_pNextDispatch->clRetainMemObject(ret->src_buffer);

g_pNextDispatch->clRetainMemObject(ret->dst_buffer);

return ret;

}

// <snip>

cl_mem src_buffer = nullptr;

cl_mem dst_buffer = nullptr;

size_t src_offset = 0;

size_t dst_offset = 0;

size_t size = 0;

private:

CopyBuffer(

cl_command_buffer_khr cmdbuf,

cl_command_queue queue) : Command(cmdbuf, queue, CL_COMMAND_COPY_BUFFER) {};

};
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• Enqueues each recorded 
command into the provided 
command queue

• Notes:
• Need to map sync points to 

events

• May need to insert command 
queue barriers in some cases 
(not shown)

Command Buffer Enqueue “Plays Back” Commands

struct CopyBuffer : Command

{

// <snip>

int playback(

cl_command_queue queue,

std::vector<cl_event>& deps) const override

{

auto wait_list = getEventWaitList(deps);

auto signal = getEventSignalPtr(deps);

return g_pNextDispatch->clEnqueueCopyBuffer(

queue,

src_buffer,

dst_buffer,

src_offset,

dst_offset,

size,

static_cast<cl_uint>(wait_list.size()),

wait_list.data(),

signal);

}

// <snip>

};
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Brief Retrospective
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• OpenCL installable layer mechanism is solid!

• Many OpenCL features make layering easy:
• Built-in Reference Counting and Object Queries

• clCloneKernel to Clone Kernels and their Arguments

Most things went well!
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• How can we do event profiling for command buffers?
• Need to profile a group of commands

• Solution: add barriers with event profiling

Some things were tricky…

Start 
Barrier

End 
Barrier

Command Buffer

A B
C

D
E

F

G

Use this event for:
CL_PROFILING_COMMAND_QUEUED,
CL_PROFILING_COMMAND_SUBMIT,
CL_PROFILING_COMMAND_START

Use this event for:
CL_PROFILING_COMMAND_END
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Verdict: Success!

Host API Execution Time

Device Execution Time

(Data collected with the OpenCL Intercept Layer, IWOCL 2018)
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• How can we do error checking when commands
are recorded?

Some things were tricky…
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Setup:

1. Create a “Test Queue” when 
command buffer is created

2. Also, create a “Blocking Event” 
when command buffer is created

3. Enqueue a Barrier dependent on 
the “Blocking Event”

Recording:

4. Enqueue commands to “Test 
Queue” before recording
• Command does not execute due to 

barrier dependency

• But error checking is performed!

Finalization:

5. Set “Blocking Event” to error state 
when command buffer is finalized
• All dependent command discarded!

Tentative Solution:

Test Queue
Start 

Barrier

Blocking 
Event

A B …
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• Relies on tricky behavior / dusty corners of the spec

• Still in a branch, probably will not be enabled by default

Verdict: Partial Success?
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• How can we track command buffer states?
• RECORDING is straightforward…

• EXECUTABLE is straightforward, too…

• PENDING is complicated!

• No current solution

• Possibility:
• Track event for the last enqueue, test if it is COMPLETE?

• Might work, but adds complexity and overhead

Some things were tricky…
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• The PENDING state is the only layer CTS failure!

• Nice to fix, but probably doesn’t affect much code 
in practice…

Some things were tricky…

$ ./test_conformance/extensions/cl_khr_command_buffer/test_cl_khr_command_buffer info_state

Initializing random seed to 0.

Requesting Default device based on command line for platform index 3 and device index 0

Compute Device Name = Intel(R) UHD Graphics 770, Compute Device Vendor = Intel(R) Corporation, Compute Device Version = OpenCL 3.0 NEO , CL C Version 
= OpenCL C 1.2 

Device latest conformance version passed: v2023-05-16-00

Supports single precision denormals: YES

sizeof( void*) = 8  (host)

sizeof( void*) = 8  (device)

info_state...

ERROR: Unexpected result of CL_COMMAND_BUFFER_STATE_KHR query!! (!(state == expected) from /home/bashbaug/git/OpenCL-
CTS/test_conformance/extensions/cl_khr_command_buffer/command_buffer_get_command_buffer_info.cpp:222)

ERROR: verify_state failed! ((unknown) from /home/bashbaug/git/OpenCL-
CTS/test_conformance/extensions/cl_khr_command_buffer/command_buffer_get_command_buffer_info.cpp:260)

ERROR: RunStateInfoTest failed! ((unknown) from /home/bashbaug/git/OpenCL-
CTS/test_conformance/extensions/cl_khr_command_buffer/command_buffer_get_command_buffer_info.cpp:69)

ERROR: Test Failed! ((unknown) from /home/bashbaug/git/OpenCL-CTS/test_conformance/extensions/cl_khr_command_buffer/basic_command_buffer.h:105)

info_state FAILED

PASSED sub-test.

FAILED test.
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Current Usage Examples
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Conformance Test Suite Development

Develop and debug the 
CTS on any device!

Bonus: CTS found a few 
bugs in the layer, too…
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• cl_khr_command_buffer is a base specification, 
designed to support additional functionality via 
layered extensions
• Examples:

• cl_khr_command_buffer_multi_device

• cl_khr_command_buffer_mutable_dispatch

• cl_khr_command_buffer_mutable_memory_commands

Layered Extension Development

Emulation layer provides a convenient mechanism to quickly 
prototype layered extensions!
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• SYCL Graph is an experimental oneAPI extension to build and 
execute entire graphs of commands:

• For OpenCL backends, graphs are recorded into command buffers

High-Level Language Feature Development

(Diagram from “Towards Deferred Execution of a SYCL Command Graph”, IWOCL 2023)

Emulation layer provides a convenient mechanism to develop, 
debug, and test the SYCL Graph extension!
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A Brief Look at Performance
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• Is the layer expensive?
• How does layer performance 

compare to non-command 
buffer performance?

• Test Parameters:
• Submission time or 

completion time?

• How many kernels?

• Is the layer effective?
• How does layer performance 

compare to native command 
buffer performance?

• Test Parameters:
• Submission time or 

completion time?

• How many kernels?

• In-order or out-of-order?

Key Performance Questions

Developed microbenchmarks to answer these questions!

( “How to Optimize Compute Drivers? Let’s Start with Writing Good Benchmarks!”, IWOCL 2022)



Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 28

• Enqueue N kernels directly?

• Or enqueue N kernels in a Command Buffer?

• Measure submission time or completion time

Microbenchmark #1: ExecuteCommandBuffer

Command Buffer

K0 K1 K2 … Kn

K0 K1 K2 … Kn

https://github.com/bashbaug/compute-benchmarks/blob/micros-for-iwocl-2024/source/benchmarks/
api_overhead_benchmark/implementations/ocl/execute_command_buffer_ocl.cpp

https://github.com/bashbaug/compute-benchmarks/blob/micros-for-iwocl-2024/source/benchmarks/api_overhead_benchmark/implementations/ocl/execute_command_buffer_ocl.cpp
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NVIDIA GeForce RTX 3060 POCL Intel(R) Arc(TM) A750 Graphics Intel(R) UHD Graphics 770 oneAPI Construction Kit

Command Buffer Execution Time With Layer

(Normalized to Non-Command Buffer Time, Lower Is Better)

Submisison Time Completion Time

ExecuteCommandBuffer Results

Generally, no layer penalty!

Submission Time: ExecuteCommandBuffer(api=ocl UseCommandBuffers=1 NumKernels=10 KernelExecutionTime=1 MeasureCompletionTime=0)
Completion Time: ExecuteCommandBuffer(api=ocl UseCommandBuffers=1 NumKernels=10 KernelExecutionTime=1 MeasureCompletionTime=1)
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ExecuteCommandBuffer Results

0%

20%

40%

60%

80%

100%

120%

POCL oneAPI Construction Kit

Command Buffer Execution Time Without Layer

(Normalized to Layer Time, Lower Is Better)

Submission Time Completion Time

Bug reported!
Native implementation faster:

Layer performance is acceptable.

Submission Time: ExecuteCommandBuffer(api=ocl UseCommandBuffers=1 NumKernels=10 KernelExecutionTime=1 MeasureCompletionTime=0)
Completion Time: ExecuteCommandBuffer(api=ocl UseCommandBuffers=1 NumKernels=10 KernelExecutionTime=1 MeasureCompletionTime=1)
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Summary and Conclusion
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• Successfully emulated command buffers with an OpenCL layer!
• Almost all features are implemented, layer is almost conformant

• Command buffer emulation layer is useful!
• Accelerates layered extension design and development
• Accelerates CTS development
• Accelerates SYCL Graph development
• Handy alternative for debugging and performance analysis

• OpenCL layer mechanism is robust, performant, and capable
• Consider emulation for future extensions to improve adoption?

• Thank you!

Summary and Conclusion
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Disclaimers



Intel ConfidentialDepartment or Event NameIWOCL 2024, April 8-11 34

• Command Buffer Emulation Layer
• https://github.com/bashbaug/SimpleOpenCLSamples/tree/main/layers/10_cmdbufemu

• Command Buffer Microbenchmarks
• https://github.com/bashbaug/compute-benchmarks/tree/micros-for-iwocl-2024

• Referenced IWOCL Presentations
• Layers for OpenCL (IWOCL 2021) (slides)

• Debugging and Analyzing Programs Using the Intercept Layer for OpenCL 
Applications (IWOCL 2018) (slides)

• Towards Deferred Execution of a SYCL Command Graph (IWOCL 2023) (slides)

• How to Optimize Compute Drivers? Let’s Start with Writing Good Benchmarks! 
(IWOCL 2022) (slides)

Related Links and References

https://github.com/bashbaug/SimpleOpenCLSamples/tree/main/layers/10_cmdbufemu
https://github.com/bashbaug/compute-benchmarks/tree/micros-for-iwocl-2024
https://github.com/Kerilk/OpenCL-Layers-Tutorial/blob/main/presentation/LayersForOpenCL.pdf
https://www.iwocl.org/wp-content/uploads/iwocl-2018-intel-debug-analyze-intercept-layer.pdf
https://www.iwocl.org/wp-content/uploads/iwocl-2023-Ewan-Crawford-4608.pdf
https://www.iwocl.org/wp-content/uploads/42-presentation-iwocl-syclcon-2022-mrozek.pdf
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System Configuration

Host:

OS: Linux bashbaug-newpc 6.5.0-26-generic #26~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Mar 12 10:22:43 UTC 
2 x86_64 x86_64 x86_64 GNU/Linux

CPU: 12th Gen Intel(R) Core(TM) i9-12900K

Drivers:

NVIDIA GeForce RTX 3060 535.86.10

Intel(R) Arc(TM) A750 Graphics 24.09.28717.12

Intel(R) UHD Graphics 770 24.09.28717.12

POCL PoCL 5.0  Linux, RelWithDebInfo, RELOC, SPIR, SPIR-V, LLVM 14.0.0, SLEEF, POCL_DEBUG
(built from tag v5.0, commit 0bffce0)

oneAPI Construction Kit ComputeAorta 4.0.0 Linux x86_64 (RelWithDebInfo, 85dfbf7e)
(built from commit 85dfbf7, with LLVM 19.0.0)

Software:

Emulation Layer (built from commit 80222e5)

Compute-Benchmarks (built from commit 17b58e0)

https://github.com/intel/compute-runtime/releases/tag/24.09.28717.12
https://github.com/intel/compute-runtime/releases/tag/24.09.28717.12
https://github.com/pocl/pocl/releases/tag/v5.0
https://github.com/pocl/pocl/commit/0bffce03b71c2be14ced90019418e943fd770114
https://github.com/codeplaysoftware/oneapi-construction-kit/commit/85dfbf7e8c70e01b37daea0dee20e89ccd7af5f7
https://github.com/bashbaug/SimpleOpenCLSamples/commit/80222e57d7f71616c4b4d30eb5bb79fed7b2a053
https://github.com/bashbaug/compute-benchmarks/commit/17b58e0d25b4481d79178db8d9da2ca4e4d65b03
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