
Experience of Porting LAMMPS Application with
KOKKOS/SYCL to Aurora

Yasaman Ghadar, Argonne Leadership Computing Facility

Christopher Knight (ANL), Stan Moore (SNL), Daniel Arndt (ORNL)
Acknowledgment: Renzo Bustamante, Mike Brown

Argonne Leadership Computing Facility2

This Work Was Part of EXAALT ECP Project.
• ECP1 EXAALT project seeks to extend accuracy, length and time scales of material science

simulations for fission/fusion reactors using LAMMPS
⏤Task management layer to create MD tasks, manage task queues, and store results in databases
⏤Long-time, high-accuracy MD simulations with DFTB method
⏤Long-time, large-scale MD simulations with machine learned SNAP potential

• Programming models:
⏤ParSplice: C++
⏤LAMMPS: C/C++, OpenMP, GPU-enabled (Kokkos, CUDA, OpenCL, ROCm)
⏤LATTE: F90, OpenMP, GPU-enabled (CUDA)

• EXAALT wants to run millions of small MD replicas (1K to 1M atoms) via ParSplice as fast as possible
(not one large simulation with billions of atoms)

• Primary KPP target is MD of nuclear fusion materials that uses the SNAP
⏤ (Spectral Neighbor Analysis Potential) interatomic potential in LAMMPS

• Performance directly depends on single-node performance for SNAP

1ECP: Exascale Computing Project

Argonne Leadership Computing Facility3

LAMMPS and SNAP Potential

Geometric
descriptors of
atomic
environments

Energy as a
function of
geometric
descriptors

• LAMMPS is a classical molecular dynamics code with a focus on materials modeling. It's an acronym for
Large-scale Atomic/Molecular Massively Parallel Simulator.

• In the most common version, the trajectories of atoms and molecules are determined by numerically
solving Newton's equations of motion for a system of interacting particles, where forces between the
particles and their potential energies are often calculated using interatomic potentials or molecular
mechanical force fields. (Wiki)

• SNAP: Spectral Neighbor Analysis Potential
⏤Total energy composed as sum of energies of individual atoms.
⏤Potential energy of each atom is sum of weighted bi-spectrum (descriptor) components.

Argonne Leadership Computing Facility4

SNAP: Spectral Neighbor Analysis Potential

ESNAP = Ei
SNAP

i=1

N

∑ + φij
rep rij()

j<i

N

∑

Ei
SNAP = β0 + βkB

i
k

k∈ J<Jmax{ }
∑

Geometric
descriptors
of atomic

environments

Energy as a
function of
geometric
descriptors

• SNAP (Spectral Neighbor Analysis Potential):

SNAP approach uses Gaussian Approximation

Potential neighbor bispectrum, but replaces

Gaussian process with linear regression.

- More robust

- Lower computational cost (training and predicting)
- Decouples MD speed from training set size

- Enables large training data sets, more bispectrum

coefficients

- Straightforward sensitivity analysis

- Fast

Bartok, Csanyi et al., Phys. Rev. Lett, 2010

Argonne Leadership Computing Facility5

Status of LAMMPS on Aurora

• LAMMPS supports GPU acceleration via two separate packages
⏤ KOKKOS

Kokkos via multiple backends; SYCL is primary on Aurora
Likely to use 1 MPI rank per PVC tile

⏤ GPU
Abstraction for multiple backends (CUDA, HIP, OpenCL); OpenCL is primary on Aurora
Primarily pair calculation offloaded with everything else on host
Likely to use 8-16 MPI ranks per PVC tile

• LAMMPS can be built with ~90 optional packages
⏤ KOKKOS and GPU support for subset
⏤ Able to build without issues (except for needing to add MKL 1D-FFT support for KSPACE; WIP)

• To install LAMMPS on Aurora
⏤ $ git clone https://github.com/lammps/lammps.git
⏤ $ cd lammps/src
⏤ $ make aurora_kokkos -j 32

https://github.com/lammps/lammps.git

Argonne Leadership Computing Facility6

6

Official Use Only

~25x speedup on V100 over 3 years

LAMMPS/SNAP Was Actively Optimized on NVIDIA & AMD

Data obtained by Stan Moore and Rahul Gayatri

~13x slowdown

~7x speedup

~2x speedup

Argonne Leadership Computing Facility7

SNAP Figure of Merit on Aurora

Sapphire CPU
56 MPI Ranks

FOM

Polaris
1 A100 GPU

FOM

Aurora
1 GPU / 2 Tiles

Q323 FOM

Aurora
1 GPU / 2 Tiles

Q324 FOM

33,340 190,809 140,077 199,240

• First time SNAP on Aurora PVC GPU (2 tiles) measured as faster than A100: 1.04x
○ Now competitive with A100 and MI-250x, and still more opportunity

• Workload running 2K particles per GPU or tile (e.g. 4K particles per PVC GPU)
○ ~10% FOM increase on PVC with 32K particles per tile
○ ~6% FOM increase on A100 with 32K particles per tile

• Today’s CPU FOM used a new addition to INTEL package (~3x faster)

FOM= (# Steps * Atoms) / Time to Solution

Argonne Leadership Computing Facility8

Single-Node SNAP Performance

Image borrowed from Stan Moore and
ECP CoPA FY24Q1 report

• Aurora (original) refers to source code available from LAMMPS Github repository
and same code was run on Frontier and Polaris
⏤PVC optimizations & tuning had minor impact on A100 performance*

• Workload is 2K particles per MPI
Rank and GPU/GCD/tile on 2 nodes
⏤24 replicas on Aurora

i.e. 12 tiles * 2 nodes
⏤16 replicas on Frontier
⏤8 replicas on Polaris

Argonne Leadership Computing Facility9

Current State of SNAP on Aurora

• Success up to 1024 nodes on Aurora

Good sign considering
2K/tile is a small workload,
but SNAP is much more
expensive than other
models in LAMMPS.

Argonne Leadership Computing Facility10

SNAP Performance is
Independent of the System
Size!

2J8 system with 16,000 particles per tile (32,000 per GPU)

Argonne Leadership Computing Facility11

SNAP Bottleneck Kernels

• Using variety of tools such as iprof, VTUNE, NVIDIA NSIGHT, … 3 bottleneck kernels were identified on
LAMMPS/SNAP

• Compute Yi
• The Clebsch-Gordon products for each atom are calculated

• Compute Fused DeiDrj
• The force vector for each (atom, neighbor) pair is computed

• Compute Ui
• The compute_U routine calculates the expansion coefficients for each (atom, neighbor) pair

Argonne Leadership Computing Facility12

Time to Solution for Bottleneck Kernels

Kernel Name
(timings in milliseconds/call)

A100 PVC
Orig -
SG16

PVC
Orig -
SG32

PVC
June - SG32

TagPairSNAPComputeYi 9.00 15.77 14.6 12.38

TagPairSNAPComputeUiSmall 0.52 1.33 1.61 1.61

TagPairSNAPComputeFusedDeidrj<0> 1.05 3.14 4.63 4.49

TagPairSNAPComputeFusedDeidrj<1> 1.06 3.07 4.45 4.46

TagPairSNAPComputeFusedDeidrj<2> 1.06 2.88 4.45 4.46

TagPairSNAPComputeZi 8.93 14.29 13.43 11.60

TagPairSNAPComputeYiWithZlist 1.31 2.96 2.02 1.88

• SG refers to sub_group size and it is also related to Vector length in LAMMPS

• PVC Supports two types of sub_group size (think SIMD) 16 and 32

• Kernels were 1.5-4x slower on 1-tile PVC compared to A100

2023

Argonne Leadership Computing Facility13

Time to Solution for Bottleneck Kernels

Kernel Name
(timings in milliseconds/call)

A100 PVC
Orig -
SG16

PVC
Orig -
SG32

TagPairSNAPComputeYi* 9.00 15.77 14.6

TagPairSNAPComputeUiSmall* 0.52 1.33 1.61

TagPairSNAPComputeFusedDeidrj<0>* 1.05 3.14 4.63

TagPairSNAPComputeFusedDeidrj<1>* 1.06 3.07 4.45

TagPairSNAPComputeFusedDeidrj<2>* 1.06 2.88 4.45

TagPairSNAPComputeZi 8.93 14.29 13.43

TagPairSNAPComputeYiWithZlist 1.31 2.96 2.02

• Kernels were 1.5-4x slower on 1-tile PVC compared to A100
○ ComputeYi was priority as 60-70% of runtime
○ ComputeZi is essentially ComputeYi plus energy calculation

*called every step

Argonne Leadership Computing Facility14

ComputeYi (really evaluate_zi)

4D Kokkos View

Indexing Kokkos views (up to 4 dimensions) in SNAP is
expensive on PVC and leads to an integer operation

bottleneck.

Argonne Leadership Computing Facility15

Fun with VTune

Relative number of integer
operations drew our
attention, but again, it was
a 4D Kokkos view…

• It was no easy task to do some detailed kernel-level profiling with full LAMMPS or mini-app
○ Xiao Zhu (Intel) and JaeHyuk Kwack (ANL) were very helpful

Argonne Leadership Computing Facility16

Fun with MAAT
• MAAT is a tool for memory operation on Intel GPU’s

Argonne Leadership Computing Facility17

What happens if we do the 4D index calculation ourselves?

Grab raw pointer to data in
view

Precompute part of 4D index;
trying to keep it simple

Everything else left as-is

Argonne Leadership Computing Facility18

Single GPU Performance for SNAP

• Tuned code adjusted sub-group size and team/tile sizes for various kernels
• The “optimized” index calculation resulted in 30% in overall application runtime

Argonne Leadership Computing Facility19

Single GPU Performance for SNAP

• Tuned code adjusted sub-group size and team/tile sizes for various kernels
• The “optimized” index calculation resulted in 30% in overall application runtime

Argonne Leadership Computing Facility20

•This optimization was done with help of Mike Brown

Kernel Name
(timings in milliseconds/call)

A100 PVC
Orig - SG32

PVC
Oct - SG32

TagPairSNAPComputeYi 9.00 14.6 9.34

TagPairSNAPComputeUiSmall 0.52 1.61 0.82

TagPairSNAPComputeFusedDeidrj<0> 1.05 4.63 2.05

TagPairSNAPComputeFusedDeidrj<1> 1.06 4.45 2.01

TagPairSNAPComputeFusedDeidrj<2> 1.06 4.45 1.99

TagPairSNAPComputeZi 8.93 13.43 8.87

TagPairSNAPComputeYiWithZlist 1.31 2.02 1.81

Today’s Time to Solution!

Argonne Leadership Computing Facility21

Path to Today’s Optimization!

• In SYCL there are different types of pointers for different address spaces: global and local
• Some kernels in SNAP use Kokkos level 0 scratch memory (shared memory) which is in the local

address space

• However currently Kokkos always returns a pointer to the global address space.
• This requires the compiler to add additional control flow due to the presence of these generic address space

operations, leading to unnecessary overhead.

• As a workaround, Mike manually cast the shared memory pointers from global to local address space

• Daniel Arndt (ORNL) created an experimental Kokkos interface for using scratch memory inside
kernels that allows the user to specify the scratch level at compile-time

Argonne Leadership Computing Facility22

Path to Today’s Optimization!

• Some kernels in SNAP run better with a workgroup size of 32, while others are faster with size of 16.
Daniel Arndt created experimental code to allow setting workgroup sizes on a per-kernel basis in
Kokkos

• One kernel had a high register count leading to register spilling, so Mike added the SYCL “use large
grf” kernel property specification in this kernel to increase the size of the general register file (GRF).

Argonne Leadership Computing Facility23

•With all optimizations to-date, 2-tile Aurora PVC is 1.04x faster than A100 for this workload
• MAAT: cacheline utilization for ulisttot_pack increased from 30% to 117%

• Manually casting shared memory pointer from global to local address space
○ Reduced additional control flow

Kernel Name
(timings in milliseconds/call)

A100 PVC
Orig - SG32

PVC
Oct - SG32

TagPairSNAPComputeYi 9.00 14.6 9.34

TagPairSNAPComputeUiSmall 0.52 1.61 0.82

TagPairSNAPComputeFusedDeidrj<0> 1.05 4.63 2.05

TagPairSNAPComputeFusedDeidrj<1> 1.06 4.45 2.01

TagPairSNAPComputeFusedDeidrj<2> 1.06 4.45 1.99

TagPairSNAPComputeZi 8.93 13.43 8.87

TagPairSNAPComputeYiWithZlist 1.31 2.02 1.81

Today’s Time to Solution!

Argonne Leadership Computing Facility24

Current VTune Studies with LAMMPS (Opt vs Orig)
LAMMPS Summer 2023

LAMMPS Winter 2024
Idle time has decreased significantly

Argonne Leadership Computing Facility25

Summary of Current Optimizations
• Further optimization of 4D index calculation

• Manually casting shared memory pointer from global to local address space
○ Reduced additional control flow due to generic address space operations
○ Experimental Kokkos interface added to specify scratch level at compile-time

■ https://github.com/kokkos/kokkos/pull/5879
■ Same effect without manually casting pointers

• Tuning of workgroup size for different kernels
○ Experimental Kokkos interface to set workgroup size on per-kernel basis
○ https://github.com/kokkos/kokkos/pull/6496

• Fusing of 3 TagPairSNAPComputeFusedDeidrj<> kernels

Argonne Leadership Computing Facility26

Future Directions
• Continue pushing on performance optimizations of SNAP model

• Begin concerted effort to understand performance for other common LAMMPS workloads across GPU
and KOKKOS packages

• Special thanks to

⏤ Renzo Bustmante, Chris Knight, Varsha Madananth, Daniel Arndt, Stan Moore,
Mike Brown

⏤ plus many special guest appearances: Xiao Zhu (VTune, MAAT), Xinmin Tian
(compiler/runtime), …

Argonne Leadership Computing Facility27

Acknowledgment

This work was done on a pre-production supercomputer with early versions of the Aurora
software development kit. This research used resources of the Argonne Leadership Computing
Facility, a U.S. Department of Energy (DOE) Office of Science user facility at Argonne National
Laboratory and is based on research supported by the U.S. DOE Office of Science-Advanced
Scientific Computing Research Program, under Contract No. DE-AC02-06CH11357. SNL is
managed and operated by NTESS under DOE NNSA contract DE-NA0003525. This manuscript
has been authored by UT-Battelle, LLC, under Grant DE-AC05-00OR22725 with the U.S.
Department of Energy (DOE).

Argonne Leadership Computing Facility28

Thank you!

