IWOCL 2024 ‘

The 12th International Workshop on OpenCL and SYCL

Experience of Porting LAMMPS Application with
KOKKOS/SYCL to Aurora

Yasaman Ghadar, Argonne Leadership Computing Facility

Christopher Knight (ANL), Stan Moore (SNL), Daniel Arndt (ORNL)
Acknowledgment: Renzo Bustamante, Mike Brown

APRIL 8-11,2024 | CHICAGO, USA | IWOCLORG

This Work Was Part of EXAALT ECP Project.

« ECP'EXAALT project seeks to extend accuracy, length and time scales of material science
simulations for fission/fusion reactors using LAMMPS

—Task management layer to create MD tasks, manage task queues, and store results in databases
—Long-time, high-accuracy MD simulations with DFTB method
—Long-time, large-scale MD simulations with machine learned SNAP potential

* Programming models:
—ParSplice: C++
—LAMMPS: C/C++, OpenMP, GPU-enabled (Kokkos, CUDA, OpenCL, ROCm)
—LATTE: F90, OpenMP, GPU-enabled (CUDA)

« EXAALT wants to run millions of small MD replicas (1K to 1M atoms) via ParSplice as fast as possible
(not one large simulation with billions of atoms)

* Primary KPP target is MD of nuclear fusion materials that uses the SNAP
— (Spectral Neighbor Analysis Potential) interatomic potential in LAMMPS

 Performance directly depends on single-node performance for SNAP

Argonne Leadership Computing Facility 'ECP: Exascale Computing Project Arggmgﬁ

LAMMPS and SNAP Potential

* LAMMPS is a classical molecular dynamics code with a focus on materials modeling. It's an acronym for
Large-scale Atomic/Molecular Massively Parallel Simulator.

* In the most common version, the trajectories of atoms and molecules are determined by numerically
solving Newton's equations of motion for a system of interacting particles, where forces between the
particles and their potential energies are often calculated using interatomic potentials or molecular

mechanical force fields. (Wiki)

* SNAP: Spectral Neighbor Analysis Potential
—Total energy composed as sum of energies of individual atoms.
—Potential energy of each atom is sum of weighted bi-spectrum (descriptor) components.

N N
i SNAP _ rep
Geometrlc Energy as a E = Z E + Z Q)ij (r; j)
descriptors of function of : e
atomic m) geometric =) t=1 J<t
environments descriptors SNAP i
P Ei = ﬁo + ﬁkﬁk
k€{J<Jmax}

3 Argonne Leadership Computing Facitty . AgoNne «

SNAP: Spectral Neighbor Analysis Potential

* SNAP (Spectral Neighbor Analysis Potential):

SNAP approach uses Gaussian Approximation

Potential neighbor bispectrum, but replaces

Geometric
descriptors
of atomic
environments

Gaussian process with linear regression.

More robust

Lower computational cost (training and predicting) ar X o
ENE = X EN + 20 (1)

- Decouples MD speed from training set size = P
— Enables large training data sets, more bispectrum ENY = By + {E }/J’kBZ
KE(I < ma
coefficients

Straightforward sensitivity analysis
Fast

4 Argonne Leadership Computing Facility Bartok, Csanyi et al., Phys. Rev. Lett, 2010

Energy as a
function of
geometric
descriptors

AAAAAAAAAAAAAAAAAA

5

Status of LAMMPS on Aurora

« LAMMPS supports GPU acceleration via two separate packages

— KOKKOS
Kokkos via multiple backends; SYCL is primary on Aurora
Likely to use 1 MPI rank per PVC tile

— GPU
Abstraction for multiple backends (CUDA, HIP, OpenCL); OpenCL is
Primarily pair calculation offloaded with everything else on host
Likely to use 8-16 MPI ranks per PVC tile

« LAMMPS can be built with ~90 optional packages
— KOKKOS and GPU support for subset
— Abile to build without issues (except for needing to add MKL 1D-FFT support for KSPACE; WIP)

* Toinstall LAMMPS on Aurora
— §$ git clone https://github.com/lammps/lammps.qgit
— $ cd lammps/src
— $ make aurora_kokkos -j 32

Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

https://github.com/lammps/lammps.git

LAMMPS/SNAP Was Actively Optimized on NVIDIA & AMD

200 T | T 15 T | 1 |
Q-
150 7
2] 2]
g -0 Algg E 1 O B E o 3 PVC.(SYCL backend) 7]
8 g-.? x/llll()() @ PP Arcticus (SYCL backend)
7] =¥ PVC (SYCL backend) 175
é 1 OO B PP Arcticus (SYCL backend) I é
N A 5+ -
S0F 7
~13x slowdown
* ~2x speedup
0 & 1 5 — 0 L L
Jan=2018 Jan-2019 Jan-2020 = Jan-2021 Jun=2019 Dec-2019 Jul-2020 Jan-2021 Aug-2021
SNAP Version SNAP Version

~25x speedup on V100 over 3 years

Data obtained by Stan Moore and Rahul Gayatri

6 Argonne Leadership Computing Facility Argonne &

Intel GPU vs. A100 Performance

SNAP Figure of Merit on Aurora .

0.80

FOM Ratio

0.40

FOM= (# Steps * Atoms) / Time to Solution

0.00
Q321 Q421 Q12 Q222 Q32 Q42 Q123 Q223 Q323 Q423

Sapphire CPU Polaris Aurora Aurora

56 MPI Ranks 1 A100 GPU 1 GPU /2 Tiles 1 GPU /2 Tiles
FOM FOM Q323 FOM Q324 FOM
33,340 190,809 140,077 199,240

* First time SNAP on Aurora PVC GPU (2 tiles) measured as faster than A100: 1.04x
o Now competitive with A100 and MI-250x, and still more opportunity

* Workload running 2K particles per GPU or tile (e.g. 4K particles per PVC GPU)
o ~10% FOM increase on PVC with 32K particles per tile
o ~6% FOM increase on A100 with 32K particles per tile

+ Today’s CPU FOM used a new addition to INTEL package (~3x faster)

7 Argonne Leadership Computing Facility Argonne &

Single-Node SNAP Performance

100 * Workload is 2K particles per MPI

Rank and GPU/GCD/tile on 2 nodes
—24 replicas on Aurora
i.e. 12 tiles * 2 nodes

—16 replicas on Frontier
—38 replicas on Polaris
200
0

Aurora Aurora Frontier Polaris
(original) (optimized)

1000

0
o
o

H
o
o

Performance (katom-
steps/s/node)
(e2]
o
S

* Aurora (original) refers to source code available from LAMMPS Github repository

and same code was run on Frontier and Polaris
—PVC optimizations & tuning had minor impact on A100 performance*

Image borrowed from Stan Moore and
ECP CoPA FY24Q1 report

8 Argonne Leadership Computing Facility Argonne &

Current State of SNAP on Aurora
Good sign considering

LAMMPS Weak-scaling efficiency 2K/tile is a small workload,
(2K Particles/Tile)

but SNAP is much more
' / expensive than other
‘_4——. ¢ models in LAMMPS.

Parallel Efficiency

1 2 4 8 16 32 64 128 256 512 1024
of Aurora Nodes

» Success up to 1024 nodes on Aurora

9 Argonne Leadership Computing Facility Argonne &

FOM
1024
256
64
16
4
1
1 2 4 8 16 32
Scaling
64
16
4
1
1 2 4 8 16 32

10 Argonne Leadership Computing Facility

b3

—— AUIOra
e POlaris

- 9= ldeal

— AUTOra
e P OIS

- 0= |deal

1.2

0.

(e]

0.

(=2}

0.

=N

0.

N

SNAP Performance is
Independent of the System
Size!

Efficiency

m Aurora
m Polaris
1 2 4 8 16 32 64

2J8 system with 16,000 particles per tile (32,000 per GPU)

uuuuuuuuuuuuuuuuu

SNAP Bottleneck Kernels

* Using variety of tools such as iprof, VTUNE, NVIDIA NSIGHT, ... 3 bottleneck kernels were identified on
LAMMPS/SNAP

* Compute Yi
* The Clebsch-Gordon products for each atom are calculated
* Compute Fused DeiDrj
* The force vector for each (atom, neighbor) pair is computed
* Compute Ui
 The compute U routine calculates the expansion coefficients for each (atom, neighbor) pair

11 Argonne Leadership Computing Facility Argonne &

Time to Solution for Bottleneck Kernels

2023
Kernel Name A100 PVC PVC PVC
(timings in milliseconds/call) Orig - Orig - June - SG32
SG16 SG32

TagPairSNAPComputeYi 9.00 15.77 14.6 12.38
TagPairSNAPComputeUiSmall 0.52 1.33 1.61 1.61
TagPairSNAPComputeFusedDeidrj<0> 1.05 3.14 4.63 4.49
TagPairSNAPComputeFusedDeidrj<1> 1.06 3.07 4.45 4.46
TagPairSNAPComputeFusedDeidri<2> 1.06 2.88 4.45 4.46
TagPairSNAPComputeZi 8.93 14.29 13.43 11.60
TagPairSNAPComputeYiWithZlist 1.31 2.96 2.02 1.88

+ SG refers to sub_group size and it is also related to Vector length in LAMMPS

+ PVC Supports two types of sub_group size (think SIMD) 16 and 32

* Kernels were 1.5-4x slower on 1-tile PVC compared to A100

12 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

Time to Solution for Bottleneck Kernels

Kernel Name A100 PVC PVC
(timings in milliseconds/call) Orig - Orig -
SG16 SG32
TagPairSNAPComputeYi* 9.00 15.77 14.6
TagPairSNAPComputeUiSmall* 0.52 1.33 1.61
TagPairSNAPComputeFusedDeidri<0>* 1.05 3.14 4.63
TagPairSNAPComputeFusedDeidri<1>* 1.06 3.07 4.45
TagPairSNAPComputeFusedDeidri<2>* 1.06 2.88 4.45
TagPairSNAPComputeZi 8.93 14.29 13.43
TagPairSNAPComputeYiWithZlist 1.31 2.96 2.02

*called every step

+ Kernels were 1.5-4x slower on 1-tile PVC compared to A100
o ComputeYi was priority as 60-70% of runtime

o ComputeZiis essentially ComputeYi plus energy calculation

13 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

int mal = malmin;
int ma2 = ma2max;
int icga = malminx(j2+1) + ma2max;

#ifdef LMP_KK_DEVICE_COMPILE
#pragma unroll

#endif

for (int ia = 0; ia < na; ia++) {

ComputeYi (really evaluate_zi)

#ifdef LMP_KK_DEVICE_COMPILE
#pragma unroll

#endif

for (int ib = @; ib < nb; ib++) {

4D Kokkos View

const complex utotl = flisttot_pack(iatom_mod, jjul+mal, eleml, iatom_div);
const complex utot2 = glisttot_pack(iatom_mod, jju2+ma2, elem2, iatom_div);

const real_type cgcoeff_a = cgblock[icgal;
const real_type cgcoeff_b = cgblock[icgb];
ztmp.re += cgcoeff_a % cgcoeff_b * (utotl.re * utot2.re - utotl.im % utot2.im);
ztmp.im += cgcoeff_a % cgcoeff_b * (utotl.re * utot2.im + utotl.im x* utot2.re);

} // end loop over ia

jjul += j1 + 1;
jju2 -= j2 + 1;
icgbh += j2;

} 77 end loop over ib

14 Argonne Leadership Computing Facility

Indexing Kokkos views (up to 4 dimensions) in SNAP is
expensive on PVC and leads to an integer operation
bottleneck.

Argonne &

Fun with VTune

* It was no easy task to do some detailed kernel-level profiling with full LAMMPS or mini-app
o Xiao Zhu (Intel) and JaeHyuk Kwack (ANL) were very helpful

o . f . t
— — P llo-— " I:lm— IM“AN”!M)AI”IB‘QID 1o | Relatlve number 0 In eger
1004 / 4%ab~) = I'mbi LR AL TS .
o operations drew our
1088 Spragma unroll
1097 for (int ib = 07 ib < mbs ib++) | 06% 1,109.820,000 @™ 1 H 1
= T attention, but again, it was
1009 SNADOUBLE swmal | = 1 .
oo 4D Kokk
10 int mal = malning a o OS VIeW' .-
102 int ma2 nazZnax;
1108 int ioga = malmin * (12 + 1) + ma2wax; 0.1% 189,795,000 |
104
108 Spragna wnroll
108 for (ist 1a = 0; ia < na; Lare) (6.2% 12206607500 (EEG_—_——— D SE—
1107 comst wtot_1 =
1108 3 atom mod, 33wl + mal, matom div); £4% 12,555.350.000 (NN 7 GEEEE———
1108 const SMAcomplex -
110 slisttot_gpuinatom mod, 1 + ma2, natom div)/ AB% 9,662.427.500 (NN SRE_———— G
m samal_r += ogblocklicga) * 7A% 15,347.075,000 CEED SR
112 (utot_l.re * utot_2.re - utot_1.im * utot_2.im)s 3% RS T 000 EEE—
1113 sumal i += ogblock[icga) * 1.5% 2,983,420,000 |ED
14 (utot_l.re * utot _2.im + utot_3.im * utot_2.re): 29% 5636420000 EEE————
"8 maleey 1.9% 2476682500
e ey 1% 2476.882,500 SE——
"7 1oga += 32 1.3% 2486205000 NN
1118] end loop over ia]
118
120 sumal_r; 12% 2315370000 GENDEN
121 K(icg] * sumal_is 0.2% 449,160,000 |8
"2 0.2% 353,800,000 &
123 0.2% 353,500,000 #
1124 02% 352,500,000 §
128 ik
1128
" / Atonic updates to ylist due to parallellzation ower the
128 / bispectrum coeffients
1129 Kokkos::etomic add(G(ylist re gpuinstom mod, jju half, netom divi),

15 Argonne Leadership Computing Facility Argonne o

uuuuuuuuuuuuuuuuu

Fun with MAAT

* MAAT is a tool for memory operation on Intel GPU’s

GPU Memory Access

Analysis Report Select kernel:

57 _ZTSZZNK6Kokkos4lmpl11ParallelForl:v 6

v

Source file: sna.h 0x1580 1111:21 send.ugm (16|M@) r34 r28 null:0 0x0

1111 [dtisttot_gpu(jjul+mal, natom mod, natom_div); 0x1590 1113:21 send.ugm (16 |M0) r38 r3e null:0 0xe

1112 const SNAcomplex utot 2 = 0x15A0 1114:28 shl (16|M0) r20.0<1>:q ri2.0<2;1,0>:d 3
1113 ulisttot_gpu(jju2+ma2, natom_mod, natom_div); 0x15A8 1114:28 add (16|Me) r26.0<1>:q r96.0<1;1,0>:q r2(
1114 sumal_r += cgblocklicgal x* 0x15B0 1114:28 send.ugm (16|M0) r32 r26 null:0 oxe

1115 (utot_l.re * utot_2.re — utot_l.im * utot_2.im); 0x15C0 1109:41 (W) add (1|Me) r44.10<1>:d r44.10<0;1,0>:d 1n
1116 sumal_i += cgblocklicgal * - - 0x15D0 1109:33 cmp (16|M0) (1t)f2.0 null<l>:d r44.10<0;1,0>:d ri:
1117 (utot_l.re x utot_2.im + utot_l.im * utot_2.re); ©Ox15E01115:63 sync.nop null

1118 mal++; 0x15E8 1115:63 mul (16|Me) acc0.0<1>:df r36.0<1;1,0>:df rd
1119 ma2--; 0x15F8 1117:63 mul (16|Me) acc2.0<1>:df r36.0<1;1,0>:df r3t
1120 icga += j2; 0x1608 1115:51 mad (16|M0) acc@.0<1>:df -acc0.0<1;0>:df r3:
1121 } // end loop over ia 0x1618 1117:51 mad (16|M@) acc2.0<1>:df acc2.0<1;0>:df r3¢
1122 0x1620 1114:25 sync.nop null

1123 ztmp_r += cgblock[icgb] * sumal_r; 0x1628 1114:25 mad (16|M0) r88.0<1>:df r88.0<1;0>:df ac(
1124 ztmp_i += cgblock[icgb] * sumal_i; 0x1638 1116:25 mad (16|M@) rg86.0<1>:df r86.0<1;0>:df ace
1125 jjul += j1 + 1; 0x1648 1109:13 (~f2.0) goto (16|M@) L5760

1126 jjuz == j2 + 1; L5720:

1127 icgb M= j2: 0x1658 1118:20 add (16|M0o) r92.0<1>:d r92.0<1;1,0>:d 1
1128 } // end loop over ib 0x1660 1119:20 add (16|M@) r68.0<1>:d r68.0<1;1,0>:d -1
1129 0x1668 1120:22 add (16|Mo) r94.0<1>:d r94.0<1;1,0>:d rb
1130 7/ Atomic updates to ylist due to parallelization over the 0x1670 1109:13 (W) jmpi L5416

1131 // bispectrum coeffients. L5760:

1132 Kokkos: :atomic_add (&(ylist_re_gpu(natom_mod, jju_half, natom_div)), 0x1680 1109:13 join (16|M0) L5944

1133 betaj * ztmp_r); L5776:

1134 Kokkos: :atomic_add(&(ylist_im_gpu(natom_mod, jju_half, natom_div)), ?leg? 1123522 mov (1?|M9) "B:Ofb:”d r§5:°f1F110>=_“d R

0x0D08@sna.h:1074:23 g}'g::' Read16X4 oyrr PR VI i 251050 MiB 1558 /16 97.36 % Same Address, Not cache line aligned 64B
0XOF28@sna.h:1082:33 S}'{‘t’;’:' Read 16X8 o ¢ 3164K 375.67 MiB 19312 MiB 15.56 /16 194.53 % Same Address, Not cache line aligned 128 B
0x1580@sna.h:1111:21 55'333' Reau(CAICIN e 45473V 89.06 GiB 29403GiB 157716 30.29 % Random, Not cache line aligned 256 B
0x16A8@sna.h:1123:23 Global Read 16X8 | ¢, p 19.68M 237%2 120094 MiB 15.80] 16 197.49 % Same Address, Not cache line aligned 128 B

bytes

16 Argonne Leadership Computing Facility

Argonne &

NATIONAL LABORATORY

What happens if we do the 4D index calculation ourselves?

#ifndef KOKKOS_ENABLE_SYCL
#ifdef LMP_KK_DEVICE_COMPILE
#pfagma unroll(8)

#endif
#endif

for (int ib = @; ib < nb; ib++) {

int mal
int ma2

malm
ma2m

int icga = mal

in;
ax;
mink(j2+1) + ma2max;

(/) do
const
const
const

const
_

index ca
int e@
int el
int e2
complex

lculation ourselves
ulisttot_pack.extent(0);
ulisttot_pack.extent(1);
ulisttot_pack.extent(2);

* ptr_ulisttot_pack = ulisttot_pack.data();

Grab raw pointer to data in
view

Precompute part of 4D index;
trying to keep it simple

const
const

size_t i
size_t i

ndx_01
ndx_02

iatom_mod + e@ * (jjul + el * (eleml + e2 * iatom_div));
iatom_mod + e@ *x (jju2 + el x (eleml + e2 x iatom_div));

#ifndef KOKKOS_ENABLE_SYCL
#ifdef LMP_KK_DEVICE_COMPILE
#pragma unroll(8)

#endif

#endif

for (int ia =
const complex utotl = ptr_ulisttot_pack[indx_01 + e@xmall;
const complex utot2 = ptr_ulisttot_pack[indx_02 + e@xma2];
const real_type cgcoeff_a = cgblock[icgal;
const real_type cgcoeff_b = cgblock[icgb];

ztmp.re +=
ztmp.im +=

mal++;

ma2--;

icga += j2;
} // end loop over ia

jjul += j1 + 1
jju2 == j2 + 1
icgb += j2;
} // end loop over ib
17 Argonne Leadership Computing Faciity

0; ia < na; ia++) {

’

/ Everything else left as-is

cgcoeff_a x cgcoeff_b * (utotl.re * utot2.re - utotl.im % utot2.im);
cgcoeff_a x cgcoeff_b % (utotl.re * utot2.im + utotl.im * utot2.re);

Argonne &

NATIONAL LABORATORY

Single GPU Performance for SNAP

Single GPU w/ 2K particles per tile/GCD/GPU
- 40 3.53.53.6

qh, 3.5
s 3.0 426 252525
5 20
' 1.3
15 012
3 1.0 II
-— 0-5 I
L 0.0

w/ SYCL w/SYCL SYCL CUDA

morig mtuned mopt

1.6

1 PVC tile 2PVCtile 1 A100w/ 1A100w/ 1 MI250X

GCD w/
HIP

« Tuned code adjusted sub-group size and team/tile sizes for various kernels
« The “optimized” index calculation resulted in 30% in overall application runtime

18 Argonne Leadership Computing Facility

Argonne &

Single GPU Performance for SNAP

Single GPU w/ 2K particles per tile/GCD/GPU
- 4.0 3.53.53.6

qh, 3.5
s 3.0 426 252525
5 20
' 1.3
15 012
3 1.0 II
-— 0-5 I
L 0.0

w/ SYCL w/SYCL SYCL CUDA

morig mtuned mopt

1 PVC tile 2PVCtile 1 A100w/ 1A100w/ 1 MI250X

GCD w/
HIP

« Tuned code adjusted sub-group size and team/tile sizes for various kernels
« The “optimized” index calculation resulted in 30% in overall application runtime

19 Argonne Leadership Computing Facility

Argonne &

Today’s Time to Solution!

Kernel Name PVC PVC
(timings in milliseconds/call) Orig - SG32 | Oct -SG32

TagPairSNAPComputeYi
TagPairSNAPComputeUiSmall
TagPairSNAPComputeFusedDeidrj<0>
TagPairSNAPComputeFusedDeidrj<1>
TagPairSNAPComputeFusedDeidrj<2>
TagPairSNAPComputeZi
TagPairSNAPComputeYiWithZlist

*This optimization was done with help of Mike Brown

20 Argonne Leadership Computing Facility

9.00
0.52
1.05
1.06
1.06
8.93
1.31

14.6
1.61
4.63
4.45
4.45
13.43
2.02

9.34
0.82
2.05
2.01
1.99
8.87
1.81

AAAAAAAAAAAAAAAAAA

Path to Today’s Optimization!

In SYCL there are different types of pointers for different address spaces: global and local

Some kernels in SNAP use Kokkos level 0 scratch memory (shared memory) which is in the local
address space
However currently Kokkos always returns a pointer to the global address space.

This requires the compiler to add additional control flow due to the presence of these generic address space
operations, leading to unnecessary overhead.

As a workaround, Mike manually cast the shared memory pointers from global to local address space

Daniel Arndt (ORNL) created an experimental Kokkos interface for using scratch memory inside
kernels that allows the user to specify the scratch level at compile-time

21 Argonne Leadership Computing Facility Argonne 6

Path to Today’s Optimization!

Some kernels in SNAP run better with a workgroup size of 32, while others are faster with size of 16.
Daniel Arndt created experimental code to allow setting workgroup sizes on a per-kernel basis in
Kokkos

One kernel had a high register count leading to register spilling, so Mike added the SYCL “use large
grf’ kernel property specification in this kernel to increase the size of the general register file (GRF).

#include <sycl/ext/intel/experimental/kernel_properties.hpp>
#define SYCL_SPECIFY_HIGH_REG_COUNT() sycl::ext::intel::experimental::set_kernel_prope

rties(sycl::ext::intel::experimental::kernel_properties::use_large_grf);

22 Argonne Leadership Computing Facility Argonne ‘}

Today’s Time to Solution!

Kernel Name A100 |PVC PVC
(timings in milliseconds/call) Orig -SG32 |Oct-SG32

TagPairSNAPComputeYi
TagPairSNAPComputeUiSmall
TagPairSNAPComputeFusedDeidrj<0>
TagPairSNAPComputeFusedDeidrj<1>
TagPairSNAPComputeFusedDeidrj<2>
TagPairSNAPComputeZi
TagPairSNAPComputeYiWithZlist

*With all optimizations to-date, 2-tile Aurora PVC is 1.04x faster than A100 for this workload
 MAAT: cacheline utilization for ulisttot_pack increased from 30% to 117%
* Manually casting shared memory pointer from global to local address space

o Reduced additional control flow

23 Argonne Leadership Computing Facility

9.00
0.52
1.05
1.06
1.06
8.93
1.31

14.6
1.61
4.63
4.45
4.45

13.43
2.02

9.34
0.82
2.05
2.01
1.99
8.87
1.81

AAAAAAAAAAAAAAAAAA

Current VTune Studies with LAMMPS (Opt vs Orig)

LAMMPS Summer 2023

Recommendations

GPU Time, % of Elapsed timej 33.5%
GPU utilization is low. Switch to the Graphics view for in-depth analysis of host activity. Poor GPU utilization can prevent the application from offloading effectively.

XVE Array Stalledlldlel 55.1%
GPU metrics detect so issues. Use # GPU Compute/Media Hotspots (preview) to understand how well your application runs on the specified hardware.

Idle time has decreased significantly
LAMMPS Winter 2024

Recommendations
GPU Time, % of Elapsed timeI: 24.3%
p

GPU utilization is low. Switch to the Graphics view for in-depth analysis of host activity. Poor GPU utilization can prevent the application from offloading effectively.

XVE Array Stalled/Idle:| 43.7%
GPU metrics detect some kernel issues. Use # GPU Compute/Media Hotspots (preview) to understand how well your application runs on the specified hardware.

24 Argonne Leadership Computing Facility Argonne ‘)

Summary of Current Optimizations

* Further optimization of 4D index calculation

* Manually casting shared memory pointer from global to local address space
o Reduced additional control flow due to generic address space operations
o Experimental Kokkos interface added to specify scratch level at compile-time
m https://github.com/kokkos/kokkos/pull/5879
m Same effect without manually casting pointers

* Tuning of workgroup size for different kernels
o Experimental Kokkos interface to set workgroup size on per-kernel basis
o https://github.com/kokkos/kokkos/pull/6496

* Fusing of 3 TagPairSNAPComputeFusedDeidrj<> kernels

25 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

Future Directions

+ Continue pushing on performance optimizations of SNAP model

+ Begin concerted effort to understand performance for other common LAMMPS workloads across GPU
and KOKKOS packages

- Special thanks to

— Renzo Bustmante, Chris Knight, Varsha Madananth, Daniel Arndt, Stan Moore,
Mike Brown

— plus many special guest appearances: Xiao Zhu (VTune, MAAT), Xinmin Tian
(compiler/runtime), ...

26 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

Acknowledgment

This work was done on a pre-production supercomputer with early versions of the Aurora
software development kit. This research used resources of the Argonne Leadership Computing
Facility, a U.S. Department of Energy (DOE) Office of Science user facility at Argonne National
Laboratory and is based on research supported by the U.S. DOE Office of Science-Advanced
Scientific Computing Research Program, under Contract No. DE-AC02-06CH11357. SNL is
managed and operated by NTESS under DOE NNSA contract DE-NA0003525. This manuscript

has been authored by UT-Battelle, LLC, under Grant DE-AC05-000R22725 with the U.S.
Department of Energy (DOE).

27 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

Thank you!

28 Argonne Leadership Computing Facility Argggpuemg

