IWOCL 2024

The 12th International Workshop on OpenCL and SYCL

Events Events Events

James Brodman, Intel

Ben Ashbaugh, Michael Kinsner, Steffen Larsen, Greg Lueck, John Pennycook,
Roland Schulz — Intel

Gordon Brown - Codeplay

APRIL 8-11,2024 | CHICAGO, USA | IWOCLORG

. FONE
WELCOME TOUR NEW
EVENT OVERLORDS.

Generated by
Bing Copilot

..Clearly NOT
using SYCL

int main() {

Dependencesin SYCL e Aeul

queue Q;

Q.submit([&]Chandler& h) {

Two views:
h.parallel_for(R, [=](Cauto idx) {

1. Data- buffers/accessors D; B
Q.submit([&]Chandler& h) {

h.parallel_for(R, [=](Cauto idx) {

3); 1),
@ Q.submit([&]Chandler& h) {
]
h.parallel_for(R, [=](Cauto idx) {
£); 1),

Kernel
2

Q.submit([&]Chandler& h) {

h.parallel_for(R, [=](Cauto idx) {
) 1),

intel software €

int main() {

Dependences in SYCL PR

queue Q;

: = Q.submit([&]Chandler& h) {
Two views: h.parallel_for(R, [=]Cauto idx) {
3); 1);

= Q.submit([&]Chandler& h) {

2-TaS|< - events h.parallel_for(R, [=]Cauto idx) {

3); B);

= Q.submit([&]Chandler& h) {
@ h.parallel_for(R, [=](Cauto idx) {
1 3); 1),

Q.submit([&]Chandler& h) {

Kernel

2 h.parallel_for(R, [=](Cauto idx) {

¥); 1);

intel software 4

SYCL Events

The hammer of synchronization and utility!

* INnSYCL 2020, every command returns an event
= USM relies on event-based synchronization (OoO queues)
» Command execution statusis reported via an event

» Profiling infois provided via an event

.. If theyre so useful, what's the problem?

intel software 5

Generated by
Google Gemini

intel sof| 6

Or ... you pay for what you get:

» Event creation has a cost
* [In some implementations, a backend eventis ALWAYS created

» Sometimes events are never used (or immediately destroyed)!
= |In-order queues
= No cross-queue synchronization

» Event profiling is all-or-none
* Profiling enabled via property at queue creation
* Profiling enabled for ALL commands in queue

intel software 7

—vent Profiling

Event profiling is enabled via a queue property.
* Enabled at queue creation
» Can't be toggled on/off later

Works, but too coarse

 Sometimes only parts of execution matter

= Code may want to easily toggle profiling

= Semantic mismatch when migrating code from CUDA/HIP

intel software 8

Can we do better?

Existing Extensions for Unwanted Events:
» “Discard Events” — DPC++

* Queue property that doesn’t really create events

» “Coarse Grained Events” — AdaptiveCpp

* Queue/Command Group property to optimize behavior, assuming you
won't usually try to use the events

intel software 9

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/supported/sycl_ext_oneapi_discard_queue_events.asciidoc
https://github.com/AdaptiveCpp/AdaptiveCpp/blob/develop/doc/extensions.md

Didn't that fix it?

Neither solution is ideal:
* Discard events leaves ticking time bombs in the code

» Both require programmer annotations

* Annotations may be separate from use
= Harder to reason about what code does and how it acts

intel software = 1

Generated by
Google Gemini

intel software

Solution: More Extensions!

HOW STANDARDS PROUFERATE:
(465 AJC (HARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

7! RDIcuous! | (B0
WE NEED To DEVELOP
SITUATION: || SEUVERAL TRORRD || GITUATIONS:
THERE ARE USE CASES. e THERE ARE
M comvEmnG || (T 5]| 16 e
STANDPRS, K STANDPRDS.

https://xkcd.com/927/

intel software 12

Complexity should be “opt-in”

“Events by default”
» InSYCL forages

* Semantic break from OpenCL

= Eventsare optionalin OpenCL

= Why did SYCL make them
mandatory’?

Queue-based event profiling
= [oO coarse

= Tooinflexible
THOSE WHO FORGET THE PAST.
ARE DOMED TO REPETIT

Time to fix our technical debt.

Generated by Google Gemini

intel 13

New Engueue Functions to the Rescuel

The best way to eliminate eventsis to never create them at all.

= Two new APIs:
1) template <typename CommandGroupFunc>
void submit(sycl::queue ¢,
CommandGroupFunc&& cgf);

2) template <typename CommandGroupFunc>

sycl::event submit_with_event(sycl: :queue (,
CommandGroupFunc&& cgf);

intel software = 1

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/proposed/sycl_ext_oneapi_enqueue_functions.asciidoc

~rofiling Tags

et the user decide what to
orofile when.

* Profiling tags extension

= One new API;

* For OoO queues, synchronizes
with a barrier thatisused as a
marker

* Forin-order queues, just
engueues a marker

*Works for most backends. OpenCL will require an extension.

#include <iostream>

#include <sycl/sycl.hpp>

namespace syclex = sycl::ext::oneapi::experimental;
namespace prof = sycl::info::event_profiling;
static constexpr size_t N = 1024;

int main() {
sycl: :queue q;

syclex::parallel_for(q, iN}, [=]Cauto i) {/* first kernel */});
syclex::parallel_for(q, iN}, [=]Cauto i) {/* second kernel */});
g.wait();
uintéed_t elapsed =
end.get_profiling_info<prof::command_start>() -
start.get_profiling_info<prof::command_end>();

std::cout << "Execution time: " << elapsed << "(ns)\n";

return 0;

intel software

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/proposed/sycl_ext_oneapi_profiling_tag.asciidoc

Summary

Events are anincredibly powerful part of SYCL!
* Toolforsynchronization and measurement
* Currentuse in SYCL may have drawbacks

Proposed new extensions:
= New Enqueue Functions
= Profiling Tags

Pay for what you use - not for what you don't!

intel software = 11

Questions?

Check out DPC++:
Check out oneAPI Toolkits:

Comment/Contribute for SYCL Upstreaming to Clang!

intel software 17

https://github.com/intel/llvm
https://github.com/intel/llvm
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html

Intel software

	Slide 1
	Slide 2
	Slide 3: Dependences in SYCL
	Slide 4: Dependences in SYCL
	Slide 5: SYCL Events
	Slide 6
	Slide 7: Or … you pay for what you get:
	Slide 8: Event Profiling
	Slide 9: Can we do better?
	Slide 10: Didn’t that fix it?
	Slide 11
	Slide 12: Solution: More Extensions!
	Slide 13: Complexity should be “opt-in”
	Slide 14: New Enqueue Functions to the Rescue!
	Slide 15: Profiling Tags
	Slide 16: Summary
	Slide 17: Questions?
	Slide 18

