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int main() {

Dependencesin SYCL e Aeul

queue Q;

Q.submit([&]Chandler& h) {

Two views:
h.parallel_for(R, [=](Cauto idx) {
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SYCL Events

The hammer of synchronization and utility!

* INnSYCL 2020, every command returns an event
= USM relies on event-based synchronization (OoO queues)
» Command execution statusis reported via an event

» Profiling infois provided via an event

.. If theyre so useful, what's the problem?
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Or ... you pay for what you get:

» Event creation has a cost
* [In some implementations, a backend eventis ALWAYS created

» Sometimes events are never used (or immediately destroyed)!
= |In-order queues
= No cross-queue synchronization

» Event profiling is all-or-none
* Profiling enabled via property at queue creation
* Profiling enabled for ALL commands in queue
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—vent Profiling

Event profiling is enabled via a queue property.
* Enabled at queue creation
» Can't be toggled on/off later

Works, but too coarse

 Sometimes only parts of execution matter

= Code may want to easily toggle profiling

= Semantic mismatch when migrating code from CUDA/HIP
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Can we do better?

Existing Extensions for Unwanted Events:
» “Discard Events” — DPC++

* Queue property that doesn’t really create events

» “Coarse Grained Events” — AdaptiveCpp

* Queue/Command Group property to optimize behavior, assuming you
won't usually try to use the events
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https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/supported/sycl_ext_oneapi_discard_queue_events.asciidoc
https://github.com/AdaptiveCpp/AdaptiveCpp/blob/develop/doc/extensions.md

Didn't that fix it?

Neither solution is ideal:
* Discard events leaves ticking time bombs in the code

» Both require programmer annotations

* Annotations may be separate from use
= Harder to reason about what code does and how it acts
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Solution: More Extensions!

HOW STANDARDS PROUFERATE:
(465 AJC (HARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

7! RDIcuous! | (B0
WE NEED To DEVELOP
SITUATION: || SEUVERAL TRORRD || GITUATIONS:
THERE ARE USE CASES. e THERE ARE
M comvEmnG || (T 5 ]| 16 e
STANDPRS, K STANDPRDS.

https://xkcd.com/927/
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Complexity should be “opt-in”

“Events by default”
» InSYCL forages

* Semantic break from OpenCL

= Eventsare optionalin OpenCL

= Why did SYCL make them
mandatory’?

Queue-based event profiling
= [oO coarse

= Tooinflexible
THOSE WHO FORGET THE PAST.
ARE DOMED TO REPETIT

Time to fix our technical debt.
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New Engueue Functions to the Rescuel

The best way to eliminate eventsis to never create them at all.

= Two new APIs:
1) template <typename CommandGroupFunc>
void submit(sycl::queue ¢,
CommandGroupFunc&& cgf);

2) template <typename CommandGroupFunc>

sycl::event submit_with_event(sycl: :queue (,
CommandGroupFunc&& cgf);
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https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/proposed/sycl_ext_oneapi_enqueue_functions.asciidoc

~rofiling Tags

et the user decide what to
orofile when.

* Profiling tags extension

= One new API;

* For OoO queues, synchronizes
with a barrier thatisused as a
marker

* Forin-order queues, just
engueues a marker

*Works for most backends. OpenCL will require an extension.

#include <iostream>

#include <sycl/sycl.hpp>

namespace syclex = sycl::ext::oneapi::experimental;
namespace prof = sycl::info::event_profiling;
static constexpr size_t N = 1024;

int main() {
sycl: :queue q;

syclex::parallel_for(q, iN}, [=]Cauto i) {/* first kernel */});
syclex::parallel_for(q, iN}, [=]Cauto i) {/* second kernel */});
g.wait();
uintéed_t elapsed =
end.get_profiling_info<prof::command_start>() -
start.get_profiling_info<prof::command_end>();

std::cout << "Execution time: " << elapsed << "(ns)\n";

return 0;

intel software



https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/proposed/sycl_ext_oneapi_profiling_tag.asciidoc

Summary

Events are anincredibly powerful part of SYCL!
* Toolforsynchronization and measurement
* Currentuse in SYCL may have drawbacks

Proposed new extensions:
= New Enqueue Functions
= Profiling Tags

Pay for what you use - not for what you don't!
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Questions?

Check out DPC++:
Check out oneAPI Toolkits:

Comment/Contribute for SYCL Upstreaming to Clang!
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https://github.com/intel/llvm
https://github.com/intel/llvm
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
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