
Andrey Alekseenko1,2, Szilárd Páll1,2,3, Erik Lindahl1,2,4

1 KTH Royal Institute of Technology, 2 SciLifeLab, 3 PDC Center for High Performance Computing,

4 Stockholm University

Experiences with adding SYCL support

to GROMACS

IWOCL & SYCLcon 2021

GROMACS:

• Open source molecular dynamics engine

• One of the most used HPC codes worldwide

• High-performance for a wide range of modeled systems

• … and on a wide range of platforms:
• from supercomputers to laptops (Folding@Home)
• X86, X86_64, ARM, POWER, SPARC
• 14 SIMD backends
• NVIDIA, AMD, and Intel GPUs; Intel Xeon Phi
• Windows, MacOS, included in many Linux distros

IWOCL & SYCLcon 2021Slide 2

GROMACS 2021:

• (Mostly) C++17 codebase
• With a bit of legacy

• Multi-layer parallelism for scalability:
• SIMD for low-latency operations on CPU
• GPU offload for high-throughput operations
• OpenMP for SMP parallelism
• MPI for inter-node communication

• 427k lines of C++ code

IWOCL & SYCLcon 2021Slide 3

GROMACS 2021:

• (Mostly) C++17 codebase
• With a bit of legacy

• Multi-layer parallelism for scalability:
• SIMD for low-latency operations on CPU
• GPU offload for high-throughput operations
• OpenMP for SMP parallelism
• MPI for inter-node communication

• 427k lines of C++ code
• 8.8k lines of CUDA code
• 5.8k lines of OpenCL code

• Including 3.4k lines of host glue code

IWOCL & SYCLcon 2021Slide 4

MD loop overview

Páll et al., J. Chem. Phys. 153, 134110 (2020)

IWOCL & SYCLcon 2021Slide 5

https://aip.scitation.org/doi/abs/10.1063/5.0018516

MD loop overview

Páll et al., J. Chem. Phys. 153, 134110 (2020)

IWOCL & SYCLcon 2021Slide 6

https://aip.scitation.org/doi/abs/10.1063/5.0018516

GPU APIs in GROMACS

Maturity level √ √ X

Open standard X √ √

Hardware support Great NVIDIA-only All major h/w, varying Intel officially;
NVIDIA and AMD 3rd party

Single-source model √ X √

Modern C++ support √ X √

In GROMACS Main GPU backend for
NVIDIA GPUs.

Primary support for AMD
and Intel GPUs, partial

support for NVIDIA.
Deprecated in 2021.

In development.
Early support in 2021.

IWOCL & SYCLcon 2021Slide 7

SYCL ecosystem

https://www.khronos.org/sycl/

IWOCL & SYCLcon 2021Slide 8

https://www.khronos.org/sycl/

SYCL version requirements

• Kernels already highly optimized:
• Lots of subgroup-level functionality
• Floating-point atomics

• SYCL 1.2.1 is not enough!
• SYCL 2020 published on Feb 9, 2021
• DPC++ and hipSYCL implement some features differently
• A thin compatibility layer required

IWOCL & SYCLcon 2021Slide 9

Subgroup operations:

__any_sync __shfl_up_sync

sub_group_any N/A
(intel_sub_group_shuffle_up)

sycl::any_of_group sycl::shift_group_right

cl::sycl::ONEAPI::any_of cl::sycl::ONEAPI::sub_group::shuffle_up

sycl::any_of N/A
(__shfl_up + PP magic)

IWOCL & SYCLcon 2021Slide 10

Joys of C++

• No more duplicating structure definitions
• No more duplicating helper functions
• Templates instead of preprocessor:

IWOCL & SYCLcon 2021Slide 11

#ifdef LJ_FORCE_SWITCH
ifdef CALC_ENERGIES

calculate_force_switch_F_E(nbparam, c6, c12, inv_r, r2, &F_invr, &E_lj_p);
else

calculate_force_switch_F(nbparam, c6, c12, inv_r, r2, &F_invr);
endif /* CALC_ENERGIES */
#endif /* LJ_FORCE_SWITCH */

if constexpr (props.vdwFSwitch)
{

ljForceSwitch<doCalcEnergies>(
nbparam, c6, c12, rInv, r2, &fInvR, &energyLJPair);

}

Joys of C++

IWOCL & SYCLcon 2021Slide 12

ifndef LJ_COMB
__local int* atib = (__local int*)(LOCAL_OFFSET); //NOLINT(google-readability-casting)

undef LOCAL_OFFSET
define LOCAL_OFFSET (atib + c_nbnxnGpuNumClusterPerSupercluster * CL_SIZE)
else

__local float2* ljcpib = (__local float2*)(LOCAL_OFFSET);
undef LOCAL_OFFSET
define LOCAL_OFFSET (ljcpib + c_nbnxnGpuNumClusterPerSupercluster * CL_SIZE)
endif

auto sm_atomTypeI = [&]() {
if constexpr (!props.vdwComb)
{

return cl::sycl::accessor<int, 2, mode::read_write, target::local>(
cl::sycl::range<2>(c_nbnxnGpuNumClusterPerSupercluster, c_clSize), cgh);

}
else { return nullptr; }

}();

auto sm_ljCombI = [&]() {
if constexpr (props.vdwComb)
{

return cl::sycl::accessor<Float2, 2, mode::read_write, target::local>(
cl::sycl::range<2>(c_nbnxnGpuNumClusterPerSupercluster, c_clSize), cgh);

}
else { return nullptr; }

}();

GROMACS GPU support

• Originally designed for CUDA
• OpenCL added later

IWOCL & SYCLcon 2021Slide 13

GROMACS GPU support

• Originally designed for CUDA
• OpenCL added later

• But most GPU frameworks are similar, right?
1. Initialize device
2. Allocate memory on device
3. Copy initial data
4. Launch a kernel spanning 1000s of threads
5. Copy data back

IWOCL & SYCLcon 2021Slide 14

GPU framework comparison

Scheduling
in-order queue
or explicit DAG

in-order and
out-of-order queues implicit DAG

Synchronization event separate pseudo-task
associated with a task
or a pseudo-task associated with a task

Timing measurement regions of a single event of a single event

Timing enablement at event creation at queue creation at queue creation

Device selection by special function explicit in each call explicit in each call

Resource management manual manual RAII

Native float3 size 12 bytes 16 bytes
16 bytes
but might also be 12

Sampling mode selection at texture creation in kernel in kernel

IWOCL & SYCLcon 2021Slide 15

DAG-based scheduling

• Good: Prevent bugs and improve performance
• Bad: GROMACS is built around for in-order queues, with

explicit barrier synchronizations:
• Performance: synchronizing twice
• Correctness: device-to-host copies

• D2H Copy A
• D2H Copy B
• Enqueue event
• …
• Wait for the event // both A and B completed

• Bad: without priorities, DAG can miss the critical path
• Ugly: Additional divergence between backends

IWOCL & SYCLcon 2021Slide 16

DAG-based scheduling

IWOCL & SYCLcon 2021Slide 17

Ex
pl

ic
it

D
A

G

7% speed-up

DAG-based scheduling

• Good: Prevent bugs and improve performance
• Bad: GROMACS is built around for in-order queues, with

explicit barrier synchronizations:
• Performance: synchronizing twice
• Correctness: device-to-host copies

• D2H Copy A
• D2H Copy B
• Enqueue event
• …
• Wait for the event // both A and B completed

• Bad: without priorities, DAG can miss the critical path
• Ugly: Additional divergence between backends

IWOCL & SYCLcon 2021Slide 18

DAG-based scheduling

• Good: Prevent bugs and improve performance
• Bad: GROMACS is built around for in-order queues, with

explicit barrier synchronizations:
• Performance: synchronizing twice
• Correctness: device-to-host copies

• D2H Copy A
• D2H Copy B
• Enqueue event
• …
• Wait for the event // both A and B completed

• Bad: without priorities, DAG can miss the critical path
• Ugly: Additional divergence between backends

IWOCL & SYCLcon 2021Slide 19

DAG-based scheduling

Páll et al., J. Chem. Phys. 153, 134110 (2020)

IWOCL & SYCLcon 2021Slide 20

https://aip.scitation.org/doi/abs/10.1063/5.0018516

DAG-based scheduling

• Good: Prevent bugs and improve performance
• Bad: GROMACS is built around for in-order queues, with

explicit barrier synchronizations:
• Performance: synchronizing twice
• Correctness: device-to-host copies

• D2H Copy A
• D2H Copy B
• Enqueue event
• …
• Wait for the event // both A and B completed

• Bad: without priorities, DAG can miss the critical path
• Ugly: Additional divergence between GPU backends

IWOCL & SYCLcon 2021Slide 21

DAG-based scheduling

• Short-term: Event-based barrier synchronization
• CUDA-like pseudo-task waiting for all previously submitted tasks
• DPC++: SYCL_INTEL_enqueue_barrier extension
• hipSYCL: hipEventSynchronize

• Not optimal, but works
• Same logic for all GPU backends

• Long-term: Refactoring
• Queue-based scheduling unlikely to go away
• DAG-based scheduling is nice, but has limitations
• ???

IWOCL & SYCLcon 2021Slide 22

Portability in practice: hipSYCL

• At start, only Intel DPC++ supported
• hipSYCL added a bit later

• Effort:
• Optimized kernels ported from OpenCL
• Minor workarounds due to backend / compiler issues

• Performance:
• Complex kernels much slower than HIP/OpenCL

• Being investigated
• Less complex kernels: on par with HIP/OpenCL

IWOCL & SYCLcon 2021Slide 23

Conclusions

• “Write once, run anywhere” mostly works
• Only trivial changes to support both DPC++ and hipSYCL

• But running fast is neither easy
• Still need vendor-specific code branches to get high performance

• … nor guaranteed
• On par with OpenCL with DPC++, even faster when using LevelZero
• Occasional large regressions with hipSYCL

• Code is similar to OpenCL in spirit, but usually nicer
• Having same schedule code for both CUDA and SYCL is hard

• CUDA Graphs + SYCL’s DAG?
• Task priorities?

IWOCL & SYCLcon 2021Slide 24

Other notes

• Using existing profiling tools is great (sometimes)
• Compilation is slow

• Especially for multiple architectures
• Especially with 168 templated kernel flavors in a single file

• The whole ecosystem is evolving rapidly

IWOCL & SYCLcon 2021Slide 25

Acknowledgements

• Intel Corporation: postdoc scholarship to Andrey Alekseenko
• Heinrich Bockhorst and Roland Schulz
• GROMACS dev team, in particular Mark Abraham, Paul Bauer,

and Artem Zhmurov

IWOCL & SYCLcon 2021Slide 26

Learn more:

• https://gromacs.org/
• https://www.gromacs.org/Support/GMX-Developers_List
• https://gitlab.com/gromacs/gromacs/

• https://manual.gromacs.org/documentation/2021-
sycl/download.html

• Páll et al., J. Chem. Phys. 153, 134110 (2020)

IWOCL & SYCLcon 2021Slide 27

https://gromacs.org/
https://www.gromacs.org/Support/GMX-Developers_List
https://gitlab.com/gromacs/gromacs/
https://manual.gromacs.org/documentation/2021-sycl/download.html
https://aip.scitation.org/doi/abs/10.1063/5.0018516

