
Extending DPC++ with Support
for Huawei Ascend AI Chipset

Wilson Feng Rasool Maghareh Amy Wang

Huawei Heterogeneous Compiler Lab, Canada

IWOCL & SYCLcon 2021

April 2021

Agenda

• Huawei Ascend AI Background

• Our Contribution to DPC++
• CCE SYCL Backend
• CCE SYCL Plugin
• Compilation Toolchain
• Extension to USM
• Support for Parallel_for

• Supported Examples

• Future Work

Huawei Ascend AI Background

• Huawei’s custom SoC ASIC for AI workloads

• Host-Device programming model
• Generic C++ Host Code

• CCE Device Code – C/C++ based programming language for Ascend AI devices
• Some C++ features are disabled

• Explicit software management on different hardware pipelines (DMA transfers and
synchronization)

Huawei Ascend AI Background

H. Liao, J. Tu, J. Xia and X. Zhou, "DaVinci: A Scalable Architecture for Neural Network Computing," 2019 IEEE Hot
Chips 31 Symposium (HCS), Cupertino, CA, USA, 2019, pp. 1-44, doi: 10.1109/HOTCHIPS.2019.8875654.

CCEC Compilation

 The source codes are firstly
divided into three parts
according to the function
attribute.

 We use different compilers
to compile different types of
source codes, then we get
the linked aicore and aicpu
binary and relocatable host
objects.

 The key step is to link device
binaries and host objects
together.

Our Contribution: CCE SYCL Plugin

CPU GPU Ascend AI ChipFPGA DSP

Scalar / Vector Vector MatrixSpatial

Target System

Software

Target System

Software
Target System

Software

Target System

Software

Target System

Software

Data Parallel

C++

Architecture

OpenCL CUDA

Compiler

Intel Level-Zero Interface

Extensions

Source Code

q.submit([&](handler &h) {

// Defining Buffer Access

h.parallel_for([=](id<2> index) {

int row = index[0];

int col = index[1];

for (int i=0; i<width_a;i++){

sum += A[row][i]* B[i][col];

}

C[index] = sum;

});

CCE

Our contribution

Requires SYCL Runtime &
Toolchain to be updated.

Our Contribution: CCE SYCL Backend

sycl-ls --verbose

Selector classes in DPC++:

 host_selector, cpu_selector, gpu_selector,…

 Added hiipu_selector() which selects Huawei

Ascend AI Chipset

cl::sycl::queue Queue(cl::sycl::hiipu_selector{});

CCE Backend added to SYCL Runtime:

1. Device discovery and selection

2. Platform interface

3. Context interface

4. Queue & Event interfaces

Our Contribution: CCE SYCL Plugin

CPU GPU Davinci

Target System

Software

Target System

Software

Target System

Software

Level

Zero

OpenCL

Plugin
LLVM (host

selector)

DPC++ ExtensionsDPC++

CCE

Plugin

Cuda

Plugin

CCE Runtime Plugin: The runtime plugin
performs command group scope
instructions which act as an interface
between the host and device.

Current plugins: OpenCL, Level_zero, CUDA

CCE Plugin: Implementation similar to the
CUDA plugin

Background: Compilation Process in DPC++

• Source codes contain both host and device code.

• DPC++ compiler bundles the host codes together and
the device code together.

• Device code is compiled separately and stored in a
wrapper obj. file.

• Host code is compiled with an Integration Header
containing kernel information

• Linker links host and wrapper obj. files + Runtime
Libs.

• Loader loads the fat binary for execution. It checks if a
target specific executable image exists. If not, the
generic image is loaded and compiled online to target
specific image.

SYCL Device front-end compiler

Device Code LLVM
IR

Executable
(fat binary)

Host

Compiler

Integration
Header

Source Files

Linker

Source Files

Host
Obj. File

Wrapper
Obj. File

Device

Compiler
Runtime

Libraries

Loader
Online

Compiler

Executable
(Device Specific)https://github.com/intel/llvm/tree/sycl/sycl/doc

Background: Cuda Device Code Compilation

LLVM-link

SYCL-post-link

LLVM IR

clang-11 … -target-feature +ptx65

LLVM IR

NVPTX instructions

ptxas

cubin

fatbinary

Device Code
LLVM IR

fatbin

Offload-wrapper

Wrapper
Obj. File

Cuda Compilation

Kernel
Name

LLVM Device Code

Binary NVPTX &
Cubin in wrapper.bc

wrapper obj. file

NVPTX Instructions

Kernel
Name Kernel

Name

Integration Header

Kernel
Name

Executable (fat binary)

Cuda
Kernel

• Device Code is compiled to NVPTX and then to Cubin

• This target-specific image is stored in wrapper obj. file

• Online compilation not required

Target

Specific

Our Contribution: CCE Compilation Toolchain
clang++ -fsycl -fsycl-targets=hiipu64-hisilicon-cce-sycldevice
simple-hiipu.cpp -o simple-hiipu.exe

• DPC++ device kernel gets compiled into llvm IR and converted to TVM hybrid or IR
for AKG. Converter is an llvm opt pass.

Target

specific

https://github.com/intel/llvm/tree/sycl/sycl/doc

Extension to Unified Shared Memory (USM)

PI_CCE Plugin Api to Implement USM:

 USM Host Allocation: piextUSMHostAlloc

 USM Device Allocation: piextUSMDeviceAlloc

 USM Shared Allocation: piextUSMSharedAlloc

 USM Free: piextUSMFree

 Frees the given USM pointer associated with the context.

 USM Enqueue Mem. Set: piextUSMEnqueueMemset

 USM Enqueue Mem. Copy: piextUSMEnqueueMemcpy

 USM Enqueue Mem. Prefetch: piextUSMEnqueuePrefetch

 USM Enqueue Mem Advice: piextUSMEnqueueMemAdvise

 API to govern behavior of automatic migration mechanisms

 USM Get Mem. Allocation Info.: piextUSMGetMemAllocInfo

Implementation of Restricted USM in CCE Plugin:

1. Map Host Allocation to Host Memory

2. Map Shared Memory Allocation to Managed Memory (Similar to Cuda)

3. Map Device Allocation to Device memory

Support for Parallel-for

Toolchain

- Moving from a

SIMT model to a

multi-core of

SIMD kernels

(SIMD-kernels)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Kernel

AKG

Runtime

S1 S2 S3 S4

SIMD-
Kernel

- At runtime 4

SIMD kernels

should be

invoked to fully

use 4 AICORES

+ BlockDim = 4

we have broken the boundary between the workgroups
and workitems:

• AKG (an external tool) is capable of performing
automatic parallelization, vectorization

• We created our own parallel_for C++ abstraction where
we require static number of workgroups and workitems

• Converter would artificially create outer loops with an
extent that equals to the total number of tasks as well
as a loop hint to AKG to select the best parallelization
factor

SIMT to SIMD

Supported Examples - Matmult

Size:

• M = 384

• K = 256

• N = 512

1. Compilation uses C100 sub-architecture of HiIPU target

2. Device selection using hiipu_selector() class

3. Current implementation uses both Vector and Cube units

4. Correctness of output checked on host side

Future Work

• Alternative codegen support in parallel with AKG
• MLIR path of code generation is being developed and will require another

path to be added into our custom toolchain

• Polish runtime and toolchain code base for production
• Will be looking forward to upstream our work

Questions?

