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Can heterogeneous computing be expressed directly with C++?

Note that SYCL asks a closely related question:

Can heterogeneous computing be expressed with pure C++ syntax, and an
additional C++ API?

and is thus a continuation of SYCL’s line of thought!
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▶ C++ 17 parallel STL (PSTL) provides mechanisms to express data parallel
computation: std::for_each, std::transform, std::transform_reduce, std::
fill, std::copy…

1 #include <algorithm >
2 #include <execution >
3

4

5 std::vector <T> data = ...
6 std::for_each(Policy , data.begin(), data.end(), [](auto& x){ x += 1;});

Policy may be:
▶ std::execution::seq – algorithm must be executed sequentially
▶ std::execution::par – algorithm may be parallelized
▶ std::execution::par_unseq – algorithm may be parallelized and vectorized. Only

vectorization-safe code is allowed inside the algorithm (e.g. no locks)
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▶ Especially the par_unseq policy maps well to data-parallel accelerators like GPUs
▶ It is attractive to consider offloading such data parallel C++ constructs to data

parallel accelerators
▶ Lower barrier of entry into heterogeneous computing
▶ Highly idiomatic
▶ Perhaps get speedup for existing regular C++ code simply by recompiling with

offloading compiler?

▶ This programming model is typically referred to as stdpar (standard parallelism)
▶ Stdpar as offloading model was notably pioneered by NVIDIA’s nvc++ compiler for

NVIDIA hardware
▶ Recently, other vendors have been proposing their own solutions: AMD

roc-stdpar, Intel icpx -fsycl-pstl-offload=gpu
▶ In a similar time frame, the AdaptiveCpp project also started working on stdpar
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Stdpar implementations

Typical stdpar implementation design: Vendor model compiler → vendor model
algorithm library
▶ nvc++ → thrust (CUDA)
▶ roc-stdpar → rocThrust (HIP)
▶ icpx -fsycl-pstl-offload=gpu → oneDPL (SYCL)

Additionally,
▶ Compilers generally unaware of the stdpar model except to enable basic

prerequisistes (memory management, kernel outlining)
▶ Once the code has been compiled, existing stdpar compilers generally offload

unconditionally
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Our contributions

Meet AdaptiveCpp stdpar: Stdpar support integrated into the AdaptiveCpp SYCL
implementation.

▶ First stdpar implementation that is both open-source and based on SYCL;
▶ First stdpar implementation to demonstrate performance across Intel, NVIDIA

and AMD GPUs;
▶ First stdpar implementation to diverge from the library-focused design for

performance and functionality benefits
▶ Tighter integration of the stdpar model with the compiler
▶ Additional, new optimizations/features, including synchronization elision,

automatic prefetching of data, an offload heuristic and a pointer validation layer

▶ Substantial perf improvements over other stdpar compilers
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Stdpar implementations in
comparison

Implementation Supported hardware Open source? Based on
NVC++ CPUs,NVIDIA GPUs No CUDA+thrust
roc-stdpar AMD GPUs Yes HIP+rocThrust
icpx Intel (others?) No SYCL+oneDPL
AdaptiveCpp CPUs, Intel GPU, Yes SYCL

NVIDIA GPU, AMD GPU +own algorithms library
+compiler extensions
+runtime extensions

▶ AdaptiveCpp stdpar is not focused on hardware from one vendor
▶ By default generates a universal binary that targets all supported devices

(CPUS/Intel GPUs/NVIDIA GPUs/AMD GPUs)
▶ Start app development in high-level C++ standard parallelism, progressively move

to SYCL as more control is needed for optimization
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Implementation
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General architecture

▶ Provide custom algorithm, execution, numeric headers
▶ Add new overloads for offload-capable algorithms for par_unseq policy

▶ Set of offload-aware algorithms is still smaller than for competing solutions¹
▶ Initial goal was to provide an innovative framework; quantity in terms of algorithms

can always be improved later

▶ Algorithms where offload is not implemented will work, but run on the host.
▶ Header interception and additional compiler logic enabled using --acpp-stdpar

¹https://github.com/AdaptiveCpp/AdaptiveCpp/blob/develop/doc/stdpar.md
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Memory management

▶ C++ has a flat memory hierarchy, and is unaware of multiple distinct memory
spaces (e.g host vs device memory)

▶ → Memory needs to be available on device without the user calling special
memory allocation functions or explicit data transfers

▶ Compiler/runtime in general cannot determine all allocations that might be used
on device, e.g.
▶ indirect access: Additional pointers are loaded from memory, e.g. in pointer-based

data structures (linked lists, trees, …)
▶ Pointers to allocations might be disguised as integers

SYCL 2020 unified shared memory (USM) memory to the rescue?
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▶ SYCL System USM: All host memory addresses are directly accessible on device.
▶ Might be available e.g. if host/device are tightly integrated, the device is the host

CPU, Linux HMM
▶ No further action is needed, stdpar memory management solved!
▶ But only rarely available in practice…

▶ SYCL Shared USM: Memory automatically migrates between host and device as
needed
▶ Typically implemented with hardware emitting page faults, and driver migrating

memory pages
▶ No explicit data transfers needed, but special memory allocation/deallocation

functions required: sycl::malloc_shared(), sycl::free()
▶ More widely available (AMD, Intel, NVIDIA)

For generality, an stdpar implementation cannot assume that system USM is available.
In the following, we assume shared USM.²

²For the system USM case, AdaptiveCpp supports --acpp-stdpar-system-usm which disables
the additional shared USM memory management handling
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Supporting stdpar through shared USM requires a memory management
interposition layer:
▶ Intercept all allocations/deallocations (new, delete, malloc, free, realloc,…)

and reroute to shared USM
▶ This is how all stdpar implementations generally work
▶ Major limitation: Only works with heap allocations. What happens if a user passes

in a stack pointer?

AdaptiveCpp:
▶ Allocation handled by locally replacing function calls with compiler
▶ Deallocation handled by globally intercepting symbols → Can deallocate both

USM and regular memory everywhere
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This is very tricky to get right!³

Challenges (examples)
▶ Stack overflows/infinite recursion

due to intercepted memory
management inside SYCL

▶ Negative performance impact on
submission latency

▶ ODR-resolved functions may
cause local interposition to not
trigger correctly

▶ Memory allocation/deallocation
requests when drivers are
unavailable (early during program
startup or late during shutdown)

AdaptiveCpp solutions (examples)
▶ Conditionally disable interposition

when recursing, or when runtime
is unavailable

▶ Semi-lock-free allocation tracking
data structure that can be used to
determine whether a pointer is
USM independently from the
SYCL runtime

▶ Disable allocation interposition
inside call graph of SYCL
headers/sycl:: functions

▶ Full call graph duplication for the
interposed and non-interposed
allocation cases, insertion of ABI
tags to distinguish symbols
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Execution model

▶ C++ does not provide any information on the target device in its API
▶ → All stdpar implementations are challenged when multiple devices need to be used
▶ AdaptiveCpp stdpar uses SYCL default device¹

▶ thread-local in-order SYCL queues

▶ C++ stdpar model requires waiting after every kernel launch
▶ AdaptiveCpp is the only stdpar implementation that can detect and elide

unnecessary synchronization (more later)
¹controllable with ACPP_VISIBILITY_MASK. Multiple devices can be used e.g. via MPI.
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Correctness

Seamless integration into C++ requires that all C++ features allowed in par_unseq
algorithms work. This clashes with device code limitations, e.g. for SYCL:
▶ Kernel lambdas must capture by-value, not by reference
▶ Host pointers may not be dereferenced on device (unless system USM)
▶ function pointers, virtual functions not allowed
▶ exceptions not allowed
▶ non-trivial types may only be passed as SYCL kernel arguments if they adhere to

the SYCL device-copyable concept and specialize sycl::is_device_copyable
▶ builtin functions (e.g. math functions) need to be from sycl:: namespace, e.g.

std::sin() is not allowed
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Two categories of solutions:

1. Add extensions to support these features on device

2. Detect whether unsupported functionality is used, and if so, don’t offload (might
require delayed/different compiler diagnostics)

No stdpar implementation currently solves all of these restrictions.
AdaptiveCpp stdpar attempts to address/mitigate the most common issues. →
AdaptiveCpp stdpar can handle cases other implementations cannot handle.
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Correctness examples
▶ AdaptiveCpp supports std:: math builtins in device code

▶ New LLVM pass that remaps libc builtins to AdaptiveCpp builtins
▶ roc-stdpar only supports this partially (e.g. std::cbrt does not work)

▶ AdaptiveCpp supports capture-by-reference
▶ AdaptiveCpp validates all kernel pointer arguments

▶ If a host pointer is used, the algorithm is not offloaded.
▶ icpx does not compile kernels with capture-by-reference, nvc++ and roc-stdpar

crash if the pointer is a host pointer
▶ AdaptiveCpp supports non-trivial data structures

▶ icpx does not allow such types in kernels unless sycl::is_device_copyable is
specialized

▶ AdaptiveCpp supports memory ownership transfer to program components not
compiled with stdpar compiler
▶ this can happen easily, e.g. if std::shared_ptr is used both by the

stdpar-compiled program and external libraries
▶ roc-stdpar crashes in this case (only intercepts deallocation locally)
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Optimizations

▶ Simpler execution model than SYCL; bypass some unneeded SYCL layers (e.g.
DAG construction)
▶ → Lower submission latency than SYCL

▶ USM allocation/free is more expensive than regular allocation/free
▶ → Introduce USM memory pool and serve allocations from pool using custom

allocator
▶ Automatic emission of queue::prefetch() calls for allocations used in kernels

▶ Emitting single data transfer may be more efficient than having separate data
transfers for each page fault

▶ Supported prefetch modes
▶ always - always prefetches
▶ never - prefetching is disabled
▶ first - (default) only prefetch the first time an allocation is used on device
▶ after-sync - only prefetch for the first operation after a barrier
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Optimizations: Synchroniza-
tion elision

1 for(int i=0; i < num_iters; ++i) {
2 std::for_each(par_unseq , data.begin(), data.end(), ...);
3 std::transform(par_unseq , data.begin(), data.end(), data.begin() ,...);
4 }
5 access_results(data);

▶ stdpar algorithms in above could be executed asynchronously until results are
accessed

▶ Waiting after every stdpar call can be expensive!
▶ AdaptiveCpp detects such unnecessary barriers and elides them by delaying

synchronization for as long as possible in new LLVM pass
▶ Currently only works within one TU; calls to functions defined externally prevent

elision
▶ Move optimization to LTO pipeline?

▶ Does not work for algorithms that need to directly return a result (e.g.
transform_reduce)
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Optimizations: Offloading
heuristic

▶ Offloading is not always beneficial (e.g. latency for small problems)
▶ → Introduce offloading heuristic

▶ At runtime, record the execution chain of operations to predict the next ones
▶ Predicts offloaded/non-offloaded runtime for the next N operations

▶ Maintain database with previous kernel runtimes
▶ Both for offloaded and non-offloaded case – needs host run to calibrate performance

▶ Estimates data transfer cost using allocations passed as kernel arguments

Note: This heuristic worked well for our use cases, but we do not claim that it is
perfect!
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Optimizations: Comparison

Optimization AdaptiveCpp icpx nvc++ roc-stdpar
Memory pool Yes ? Yes Yes
Synchronization elision Yes No No No
Automatic prefetch Yes No No No
Offloading heuristic Yes No (?) No No
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Evaluation
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Setup

Test hardware:
▶ System 1: 2x AMD Epyc 7713 (Isambard P3)
▶ System 2: AMD Epyc 7543P, 4x AMD Instinct MI100 (Isambard P3)
▶ System 3: AMD Epyc 7543P, 4x NVIDIA A100 (Isambard P3)
▶ System 4: 2x Intel Xeon Platinum 8480+, 4x Intel Data Center GPU Max 1550

(IDC)

Software:
▶ AdaptiveCpp f2c2960 built against LLVM 15/libstdc++ 12, using generic

single-pass compiler
▶ oneAPI 2024.0.2
▶ CUDA 12.1, NVHPC 23.5
▶ ROCm 5.4.1, roc-stdpar 8c57cd0
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AMD GPUs and XNACK

▶ AMD GPUs depend on hardware feature called XNACK for shared USM
▶ Important for instruction retry in case of page fault
▶ Without XNACK, ROCm maps shared USM to device-accessible host-memory

▶ Every memory access needs to traverse PCIe…
▶ XNACK is elusive:

▶ Most consumer GPUs lack hardware support
▶ Not enabled on most HPC systems
▶ Needs non-standard Linux kernel arguments (cannot be enabled by unprivileged

users)

▶ We are lucky, our system supports XNACK
▶ In practice, most systems currently do not → non-XNACK performance is more

important than XNACK performance!
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Babelstream

BabelStream¹ supports the stdpar model – useful to investigate the impact of the
stdpar shared USM interposition layer!
▶ Compare to SYCL version of the code with explicit device allocations
▶ XNACK results failed to validate – only non-XNACK results are shown on AMD
▶ the icpx -fsycl-pstl-offload-compiled BabelStream crashed inside internal

SYCL header code.
▶ As a workaround, we present results with direct calls to oneDPL and explicit

sycl::malloc_shared() calls. This is a simpler problem for drivers and not
exactly the same!

¹ Tom Deakin et al. (2016): GPU-STREAM v2.0: Benchmarking the Achievable Memory Bandwidth of Many-Core Processors Across Diverse Parallel
Programming Models.
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Babelstream

Figure: BabelStream perf as a fraction of theoretical peak for
AdaptiveCpp and vendor compilers

▶ …outperforms
SYCL on CPU
(lower overhead)

▶ roc-stdpar is not
competitive
without XNACK

▶ acpp does not
need XNACK for
perf!
(auto-prefetch!)

▶ stdpar shared
USM can be
very efficient!
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Mini-apps

▶ miniBUDE¹: Compute-bound molecular docking mini-app
▶ CloverLeaf²: 2D Hydrodynamics mini-app
▶ TeaLeaf³: Heat equation solver

Investigate how stdpar compilers perform compare to native vendor model:
▶ nvcc-compiled CUDA on NVIDIA;
▶ hipcc-compiled HIP on AMD;
▶ icpx-compiled SYCL on Intel

All AdaptiveCpp prefetch modes were tested; the best were always either first or
never.

¹Poenaru et al. (2021): A Performance Analysis of Modern Parallel Programming Models Using a Compute-Bound Application.

²Lin et al. (2022): Evaluating ISO C++ Parallel Algorithms on Heterogeneous HPC Systems.

³McIntosh-Smith et al. (2017): TeaLeaf: A Mini-Application to Enable Design-Space Explorations for Iterative Sparse Linear Solvers.
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Figure: Stdpar performance normalized to native model. Fastest results are highlighted.

▶ AdaptiveCpp outperforms vendor stdpar models for 2/3 apps on all systems
▶ …Sometimes by an order of magnitude
▶ AdaptiveCpp delivers reliable performance, always faster than host PSTL
▶ icpx stdpar is not competitive except for compute-bound miniBUDE → issue in

memory interposition layer?
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LULESH¹

▶ Shock hydrodynamics mini-app
▶ Very challenging for stdpar:

▶ Frequent allocations and deallocations
▶ Lots of indirect access
▶ Latency-sensitive → sensitive to synchronous stdpar operations

¹Karlin et al. (2013): LULESH 2.0 Updates and Changes
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Figure: LULESH on A100 (pm: prefetch mode, se:
synchronization elision, mp: memory pool)

▶ Memory pool is an
important base
optimization!

▶ Synchronization
elision allows
AdaptiveCpp to
outperform nvc++
by up to 80%. (≈
80% of barriers
elided)

▶ Prefetching is
detrimental for this
app
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Figure: LULESH on Instinct MI100

▶ ROCm stack severely challenged
▶ Crash if prefetches are used
▶ XNACK performance even worse
▶ AdaptiveCpp detects the issue and decides to not offload

▶ Offloading heuristic is important!
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What about LULESH on Intel?
▶ ICPX refuses to compile LULESH (capture-by-reference)
▶ AdaptiveCpp compiles, but hangs inside Intel driver. Potential driver issue?

▶ Verified to run fine on Intel UHD 620 and 630 iGPU
▶ (Results are not exciting there; slower than host PSTL so offloading heuristic decides

to not offload)
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Conclusion

▶ Integration of heterogeneous computing directly into C++ is possible
▶ Requires deep compiler and runtime integration for best results
▶ AdaptiveCpp is the first stdpar implementation to attempt this

▶ synchronization elision, automatic prefetch, direct calls to lower-level runtime
functionality…

▶ Outperforms vendor stdpar solutions for majority of mini-apps on all platforms,
and nvc++ by 80% on A100 with LULESH

▶ Unlike roc-stdpar, performs well without XNACK (the expected case!)
▶ None of the perf weaknesses that roc-stdpar and icpx exhibited
▶ Additional compiler improvements after paper submission. Expect 10-20%

faster kernels with AdaptiveCpp 24.02…
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